Advertisement

Laboratory Experiments

Experiment 18 Haemoglobin — Oxygenation, and Magnetic and Spectroscopic Studies
  • Ei-Ichiro Ochiai
  • David R. Williams
Chapter
  • 9 Downloads

Abstract

Haemoglobin is the oxygen carrier in the blood of many animals. The molecule consists of four subunits; in human adults, the subunits are two α-chains and two β-chains. Each subunit has a haem group embedded in it and approximately 150 amino-acid residues. The iron of the haem group, i.e. Fe-protoporphyrin-IX, is bound with a histidine residue in the polypeptide. The molecular weight of the haemoglobin is 64 500. Myoglobin, which is the oxygen-storage protein in muscle and other organs, in contrast, consists of a single chain that is very similar to the a- or β-chain of haemoglobin. The difference in the composition of the molecules makes a remarkable contrast in the oxygen-binding property of the two compounds. The curves of oxygen uptake versus oxygen pressure are shown in Figure VIII.18.1. The curve for myoglobin is a normal hyperbola whereas that for haemoglobin is sigmoidal.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. E. Falk (1964). Porphyrins and Metalloporphyrins, Elsevier, AmsterdamGoogle Scholar
  2. W. S. Weissbluth Structure and Bonding, 2, 1 (1967); Haemoglobin, Springer-Verlag (1974)CrossRefGoogle Scholar
  3. D. W. Smith and R. J. P. Williams (1970). Structure and Bonding, 7, 1CrossRefGoogle Scholar
  4. Probes of Enzymes and Hemoproteins, Eds. B. Chance, T. Yonetani and A. S. Mildvan, Academic Press, New York (1971)Google Scholar
  5. E. Antonini and M. Brunori (1971). Haemoglobin and Myoglobin in Their Reactions with Ligands, North-Holland Publishing Co., AmsterdamGoogle Scholar
  6. E.-I. Ochiai (1977). Bio-inorganic Chemistry, an Introduction, Allyn and Bacon, Boston, Chapters 5 and 6Google Scholar
  7. G. Buse (1971). Angew. Chem., Int. Ed. Engl, 10, 663Google Scholar
  8. W. H. Sawyer (1972). J. Chem. Educ, 49, 777. (for Oxygenation Curve by Spectrophotometric Method)Google Scholar
  9. E.-I. Ochiai (1973). J. Inorg. Nucl. Chemf 35, 1727–1739Google Scholar
  10. C. F. Floriani and F. Calderazzo (1969). J. Chem. Soc. A, 946–953Google Scholar
  11. R. H. Bailes and M. Calvin (1947). J. Am. Chem. Soc, 69, 1886–1893Google Scholar
  12. R. G. Wilkins (1971). ‘Bio-inorganic Chemistry’ Eds. R. Dessy, J. Dillard and L. Taylor, ,4 CS Advances in Chem. Ser., 100, 111–134Google Scholar
  13. A. G. Sykes and J. A. Weil (1970). ‘Inorganic Reaction Mechanisms’, Ed. J. O. Edwards, Progr. Inorg. Chem., 13, 1–106CrossRefGoogle Scholar
  14. E. Antonini and M. Brunori (1971). Haemoglobin and Myoglobin in their Reactions with Ligands, North-Holland Publishing Co., AmsterdamGoogle Scholar
  15. G. E. Pake and T. L. Estle (1972). The Physical Principles of Electron Paramagnetic Resonance, Benjamin, 2nd edn.Google Scholar
  16. P. B. Ayscough (1967). Electron Spin Resonance in Chemistry, MethuenGoogle Scholar
  17. R. G. Wilkins (1971). Adv. Chem. Ser., 100, 111Google Scholar
  18. B. M. Hoffman, D. L. Diemente and F. Basólo (1970). J. Am. Chem. Soc, 92, 61Google Scholar
  19. E.-I. Ochiai, J. Inorg. Nucl Chem., 35, 1727, 3375 (1973); 37, 351 (1975)Google Scholar
  20. H. O. C. Hogenkamp (1968). Ann. Rev. Biochem., 37, 225Google Scholar
  21. H. A. Baker (1912). Ann. Rev. Biochem., 41, 55–90Google Scholar
  22. J. M. Wood and D. G. Brown (1972). Structure and Bonding, 11, 47–105Google Scholar
  23. J. M. Pratt (1972). Inorganic Chemistry of Vitamin B 12 , Academic Press, New YorkGoogle Scholar
  24. E. I. Ochiai (1977). Bio-inorganic Chemistry: An Introduction, Allyn and Bacon, Boston, Chapter 12Google Scholar
  25. R. E. DeSimone, M. W. Penley, L. Charbonneau, S. G. Smith, J. M. Wood, H. A. O. Hill, J. M. Pratt, S. Ridsdale and R. J. P. Williams(1973). Biochem. Biophys. Acta, 304, 851Google Scholar
  26. V. C. W. Chu and D. W. Gruenwedel (1977). Bio-inorganic Chemistry, 7, 169Google Scholar
  27. D. Dolphin (1971). In Methods in Enzymology, Vol 18, Part C, Eds. D. B. McCormick and L. D. Wright, Academic Press, New York, 35–52. (Phenol Extraction)Google Scholar
  28. G. N. Schrauzer and R. J. Windgassen. J. Am. Chem. Soc, 89, 1999 (1967); 88, 3738 (1966). (Cobaloxime)Google Scholar
  29. G. N. Schrauzer (1968). Accounts Chem. Res., 1, 97–103. (Cobaloxime)Google Scholar
  30. J. H. Wang. Accounts Chem. Res., 3, 90 (1970); J. Am. Giern. Soc, 77, 4715 (1955)Google Scholar
  31. R. C. Jannagin and J. H. Wang (1958). Accounts Giern. Res., 80, 786, 6477Google Scholar
  32. A. S. Brill (1966). Comprehensive Biochemistry, Vol. 14, Eds. M. F. Florkin and E. H. Stolz, Elsevier, Amsterdam, Chapter XGoogle Scholar
  33. B. Chance (1963). ‘Investigation of Rates and Mechanisms of Reactions’, Ed. A. Weissberger, Tech. of Org. Gem., Vol. VIII, Part H, Interscience, 1314–1360Google Scholar
  34. S. B. Brown, P. Jones and A. Suggett (l910). Progr. Inorg. Gem., 13, 159–204Google Scholar
  35. D. Dolphin, A. Forman, J. Fajer and R. H. Felton (1971). Proc. Nat. Acad. Sei., U.S.A., 68, 614–618Google Scholar
  36. R. A. Darrow and S. P. Colowick (1962). In Methods in Enzymology, Vol 5, Eds. S. P. Colowick and N. O. Kaplan, Academic Press, New York.Google Scholar
  37. R. K. Crane, (1962). In The Enzymes, Vol 6, Eds. P. D. Boyer, H. Lardy and K. Myrback, Academic Press, New YorkGoogle Scholar
  38. R. J. P. Williams (1970). Quart Rev., 24, 331Google Scholar
  39. G. L. Eichhorn (1962). Nature, 194, 474Google Scholar
  40. G. L. Eichhorn, N. A. Berger, J. J. Butzow, P. Clark, J. M. Rifkind, Y. A. Shin and E. Tarien (1971). Adv. Chem. Ser., 100, 135Google Scholar
  41. E.-I. Ochiai (1977). Bio-inorganic Chemistry: An Introduction, Allyn and Bacon, Boston, Chapter 14Google Scholar
  42. 1.
    L. G. Sillén (1967). Chem. Brit, 291Google Scholar
  43. 2.
    D. D. Perrin and R. P. Agarwal (1973). Metal Ions in Biological Systems, Vol. 2, Ed. H. Sigel, Marcel Dekker, New York, 167Google Scholar
  44. 3.
    P. M. May, P. W. Under and D. R. Williams (1977). J. Chem. Soe. Dalton, 588, (1978)1433Google Scholar
  45. 4.
    P. M. May, P. W. Linder and D. R. Williams (1976). Experientia, 32, 1492Google Scholar
  46. 5.
    P. M. May and D. R. Williams (1977). F. E. B. S. Letters, 78, 134Google Scholar
  47. 6.
    D. D. Perrin and I. G. Sayce (1967). Talanta, 14, 833Google Scholar
  48. 7.
    A. C. Baxter and D. R. Williams (1974). J. Chem. Soe. Dalton, 1117Google Scholar
  49. 8.
    N. Ingri, W. Kakotowicz, L. G. Sillén and B. Warnqvist (1967). Talanta, 14, 1261Google Scholar
  50. 9.
    Stability Constants, The Chemical Society, London, Spec. Pubis. Nos. 17 and 25 (1964 and 1971)Google Scholar
  51. 10.
    Critical Stability Constants, Eds. A. E. Martell and R. M. Smith, Plenum, New York (1974)Google Scholar
  52. 11.
    D. R. Williams (Ed.), An Introduction to Bio-inorganic Chemistry, C. C. Thomas, Illinois (1976)Google Scholar
  53. 12.
    The Biochemists’Handbook, Ed. C. Long, SPON, London (1961)Google Scholar
  54. 13.
    K. Diem and C. Lentnes (Eds.), Documenta Geigy Scientific Tables, Geigy Pharmaceuticals, Macclesfield, 7th edn. (1975)Google Scholar
  55. 14.
    D. R. Williams (1977). J. Inorg. Nucl Chem., 39, 711Google Scholar

Copyright information

© Ei-Ichiro Ochiai and David R. Williams 1979

Authors and Affiliations

  • Ei-Ichiro Ochiai
    • 1
  • David R. Williams
    • 2
  1. 1.Department of ChemistryUniversity of British ColumbiaCanada
  2. 2.Department of ChemistryUniversity of Wales Institute of Science and TechnologyCardiffUK

Personalised recommendations