Advertisement

Laboratory Experiments

Experiment 10 The Preparation, Characterisation and Screening of Pharmaceutically Active Metal Complexes
  • Ei-Ichiro Ochiai
  • David R. Williams
Chapter
  • 9 Downloads

Abstract

The last decade has seen an upsurge of interest in trace-element medicine. On the one hand this may involve adjusting the concentration of an essential or beneficial element to a figure that produces optimum health. On the other hand, this might involve administering a compound of an element not normally found in the body to stimulate the body to rid itself of an invading organism such as viruses, bacteria or cancer cells. Compounds of Group VIII in the transition series are particularly effective in this respect. The most widely known metal complex carcinostat is cis-dichlorodiammineplatinum(II) whereas substituting water molecules in place of the two chlorides gives a viable antiviral agent. Finally, some negatively charged compounds such as the hexachloroplatinate(IV) anion have marked bactericidal activity. Clearly, we cannot cover all aspects of the preparation, characterisation and screening of these drugs but we can illustrate some aspects.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. B. Rosenberg (1971). ‘Some Biological Effects of Platinum Compounds’. Plat. Metals Rev., 42Google Scholar
  2. D. R. Williams (1972). ‘Metals, Iigands and Cancer’. Chem. Rev., 72, 203CrossRefGoogle Scholar
  3. D. R. Williams (1972). ‘Anticancer Drug Designs involving Complexes of Amino-acids and Metal Ions’. Inorg. Chim. Acta. Rev., 6, 123CrossRefGoogle Scholar
  4. M. J. Cleare (1974). ‘Transition Metal Complexes in Cancer Chemotherapy’. Coord. Chem. Rev., 12, 349CrossRefGoogle Scholar
  5. M. Axford, A. Davies, D. Forbes and D. Wilson (1974). Antibacterials, LCI. Publication, Kynoch PressGoogle Scholar
  6. P. W. Selwood (1956). Magnetochemistry, InterscienceGoogle Scholar
  7. D. R. Williams (1971). ‘The Uranyl Acetate System Studied by pH Potentiometry’. J. Chem. Educ, 48, 480. (Experimental Measurements)CrossRefGoogle Scholar
  8. S. Glasstone (1955). Physical Chemistry, Macmillan, 2nd edn., 1003. (Henderson’s Equation)Google Scholar
  9. W. B. Guenther (1968). Quantitative Chemistry, Addison Wesley, 222. (Bjerrum’s Method)Google Scholar
  10. W. B. Guenther. J. Chem. Educ., 44, 46 (1967); Quantitative Chemistry, Addison Wesley, 206 (1968). (Formation Curves)Google Scholar
  11. D. D. Perrin and R. P. Agarwal (1973). ‘Multimetal-Multiligand Equilibria: A Model for Biological Systems’. Metal Ions in Biological Systems, Vol. 2, Ed. H. Sigel, Dekker (Computer Models)Google Scholar
  12. F. J. C. Rossotti, H. S. Rossotti and R. J. Whewell (1971). ‘The Use of Electronic Computing Techniques in the Calculation of Stability Constants’. J. Inorg. Nucl. Chem., 33, 2051. (Superior Methods of Converting Formation Curves into βs)CrossRefGoogle Scholar
  13. Stability Constants, The Chemical Society, London, Spec. Pubis. Nos. 17 and 25 (1964 and 1971). Critical Stability Constants, Eds. A. E. Martell andGoogle Scholar
  14. R. M. Smith, Plenum, New York (1974). (Compilations of Stability Constants)Google Scholar
  15. R. J. Angelici (1969). Synthesis and Technique in Inorganic Chemistry, Saunders, Experiment number 13. (More Exacting Methods of Obtaining log K 1, log K 2, etc. from Formation Curves)Google Scholar
  16. E.-I. Ochiai (1977). Bio-inorganic Chemistry: An Introduction, Allyn and Bacon, Boston, Chapters 14 and 15. (Biochemistry of Calcium)Google Scholar
  17. H. J. Schatzman (1975). Current Topics in Membranes and Transport, Vol 6, 125. (Calcium Pump)Google Scholar
  18. J. M. Murray and A. Weber (1974). Scientific American, 230, No.2, 59. Muscle Contraction)Google Scholar
  19. M. S. Mohan and G. A. Rechnitz. J. Am. Chem. Soct 92, 5839 (1970); 94, 1914 (1972). (Formation Constants of Ca-ATP Complexes)Google Scholar
  20. D. E. Fenton (1976). An Introduction to Bio-inorganic Chemistry, Ed. D. R. Williams, Thomas, Illinois, 281–302 ‘Symposium on Biological and Artificial Membranes’, Fed. Proc, 27, 1269(1968)Google Scholar
  21. S. J. Singer and G. L. Nicholson (1971). ‘The Fluid Mosaic Model of the Structure of Cell Membranes’. Science, 175, 720CrossRefGoogle Scholar
  22. G. Eisenmann, G. Czabo, S. Ciani, S. McLaughlin and S. Krasne (1973). ‘Ion Binding and Ion Transport Produced by Neutral Lipid Soluble Molecules’. Progr. Surface Membrane Science, 6, 139CrossRefGoogle Scholar
  23. P. B. Chock and E. O. Titus (1973). ‘Alkali Metal Ion Transport and Biological Activity’. Progr. Inorg. Chem., 18, 287CrossRefGoogle Scholar
  24. E.-I. Ochiai (1977). Bio-inorganic Chemistry: An Introduction, Allyn and Bacon, Boston, Chapter 15Google Scholar
  25. J. P. Coliman and E. Kimura (1967). J. Am. Chem. Soc., 89, 6096Google Scholar
  26. D. A. Buckingham, L. G. Marzilli and A. M. Sargeson (1967). J. Am. Chem. Soc, 89, 2772, 4539Google Scholar
  27. A. M. Sargeson and G. H. Searle (1967). Inorg. Chem., 6, 787Google Scholar
  28. D. M. L. Goodgame and L. M. Venanzi (1963). J. Chem. Soc, London, 616–627Google Scholar
  29. J. Lewis and R. G. Wilkins (1960). Modem Coordination Chemistry, Inter science, 403Google Scholar
  30. P. W. Selwood (1956). Magnetochemistry, Interscience, Chapters 5 and 6Google Scholar
  31. For magnetic properties of hemo proteins: M. Weissbluth (1967). Structure and Bonding, 2, 1–125CrossRefGoogle Scholar
  32. L. B. Rogers and C. A. Reynolds (1949). J. Am. Chem. Soc, 71, 2081 ; the data should not be relied uponGoogle Scholar

Copyright information

© Ei-Ichiro Ochiai and David R. Williams 1979

Authors and Affiliations

  • Ei-Ichiro Ochiai
    • 1
  • David R. Williams
    • 2
  1. 1.Department of ChemistryUniversity of British ColumbiaCanada
  2. 2.Department of ChemistryUniversity of Wales Institute of Science and TechnologyCardiffUK

Personalised recommendations