Advertisement

Laboratory Experiments

Experiment 1 Determination of Chloride in Biological Fluids by Thermometric Titrimetry
  • Ei-Ichiro Ochiai
  • David R. Williams
Chapter
  • 11 Downloads

Abstract

The determinations of chloride against silver by gravimetric or volumetric methods are well documented in textbooks of inorganic quantitative analysis. Complications that may arise in biological liquids include the interference of other ions and the selection of suitable indicators to give colour changes detectable in the crimson of blood as a solvent. Thermometric titrimetry is a means of circumnavigating some of these difficulties — the detection of end points of titrations from the inflection point in the graph of heat evolved versus amount of titrant added. Figure III. 1.1 is a thermogram of the simplest and most well-known type of titration — the titration of alkali from a burette into mineral acid in a stirred vessel (H+ + OH →H2O).

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D. R. Williams (1971).‘ Thermometric Titrimetry’. Educ. Chem., 8, 97Google Scholar
  2. H. J. V. Tyrrell and A. E. Beezer (1968). Thermometric Titrimetry, Chapman and Hall, LondonGoogle Scholar
  3. I. A. Matheson and D. R. Williams (1973). ‘A Potentiometrie Cu Assay in Normal and Copper-Poisoned Humans’.J. Chem. Educ, 50, 345CrossRefGoogle Scholar
  4. J. Peisach, P. Aisen and W. E. Blumberg (1966). The Biochemistry of Copper, Academic Press, New YorkGoogle Scholar
  5. G. J. Moody and J. D. R. Thomas (1976). ‘Selective Ion Sensitive Electrodes’, in An Introduction to Bio-inorganic Chemistry, Ed. D. R. Williams, C. C. Thomas, Springfield, Illinois, 220–235Google Scholar
  6. G. S. Fell and H. Smith (1976). ‘General Analytical Methods’, in An Introduction to Bio-inorganic Chemistry, Ed. D. R. Williams, C. C. Thomas, Springfield, Illinois, 254–280Google Scholar
  7. R. K. Pomeroy, N. Drikitis and Y. Koga (1975). J. Chem Educ, 52, 544 Trace Elements in Human Health and Disease — Zinc and Copper, Eds. A. S. Prasad and D. Oberleas, Academic Press, New York (1976)Google Scholar
  8. T. A. Hyde and T. F. Draisey (1974). Principles of Chemical Pathology, Butterworths, LondonGoogle Scholar
  9. M. T. Doig, M. G. Heyl and D. F. Martin (1973). ‘Lithium and Mental Health’. J. Chem. Educ, 50, 343CrossRefGoogle Scholar
  10. J. M. D’Auna, A. B. Gilchrist and J. J. Johnstone (1973). Chemistry and the Environment — a Laboratory Experience, SaundersGoogle Scholar
  11. H. A. Flaschka, A. J. Barnard and P. E. Sturrock (1969). Quantitative Analytical Chemistry, Vols. I and II, Barnes and Noble, New YorkGoogle Scholar
  12. J. M. D’Auria, A. B. Gilchrist and J. J. Johnstone (1973). Chemistry and the Environment — a Laboratory Experience, SaundersGoogle Scholar
  13. Environmental chemistry — a collection of articles appear in J. Chem. Educ., 49 January 1972 issue; Chem. Brit, 8 June 1972 issueGoogle Scholar
  14. Chemistry in the Environment, Introduced by C. L. Hamilton. Readings from Scientific American. Freeman, San Francisco (1973)Google Scholar

Copyright information

© Ei-Ichiro Ochiai and David R. Williams 1979

Authors and Affiliations

  • Ei-Ichiro Ochiai
    • 1
  • David R. Williams
    • 2
  1. 1.Department of ChemistryUniversity of British ColumbiaCanada
  2. 2.Department of ChemistryUniversity of Wales Institute of Science and TechnologyCardiffUK

Personalised recommendations