Activation of calmodulin by metal cations and occupancy of its metal-binding sites

  • W. Y. Cheung


Metal cations participate in many diversified cellular functions. Iron is a component of haemoglobin and the cytochrome system; zinc, cobalt and copper are components of certain coenzymes or metallo-enzymes; and magnesium is required in many enzymatic reactions involving phosphorylated substrates. Calcium, among all the metallic elements, is perhaps unique. It not only serves as a vital structural component of bones and teeth, but also participates — as Ca2+ ions — in a wide spectrum of cellular activities such as intermediate metabolism, cyclic nucleotide metabolism, contractility and motility, endocytosis and exocytosis, chromosome movement and cell division (Douglas, 1974; Berridge, 1975; Rasmussen & Goodman, 1977; Kretsinger, 1980; Rubin, 1982). Either directly or indirectly, Ca2+ plays a role in virtually every aspect of cellular life.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. ANDERSON, J.M., CHARBONNEAU, H., JONES, H.P., McCANN, R.O. & CORMIER, M.J. (1980). Characterization of the plant nicotinamide dinucleotide kinase activator protein and its identification as calmodulin. Biochemistry, 19, 3113–3120.CrossRefGoogle Scholar
  2. BALLOU, L.R. & CHEUNG, W.Y. (1984). The role of calcium in prostaglandin and thromboxane biosynthesis. In Role of Calcium and Calmodulin in Physiology, Marme, D. (ed.) Springer-Verlag (in press).Google Scholar
  3. BERRIDGE, M.J. (1975). The interaction of cyclic nucleotides and calcium in the control of cellular activity. Adv. Cyclic Nucleotide Res., 6, 1–98.Google Scholar
  4. BRITTAIN, H.G., RICHARDSON, F.S. & MARTIN, R.B. (1976). Terbium (III) emission as a probe of calcium (II) binding sites in proteins. J. Am. Chem. Soc, 98, 8255–8260.CrossRefGoogle Scholar
  5. CHAO, S.H., SUZUKI, Y., ZYSK, J.R. & CHEUNG, W.Y. (1984). Activation of calmodulin by various cations as a function of ionic radius. Mol. Pharmac. (in press).Google Scholar
  6. CHEUNG, W.Y. (1971). Cyclic 3’, 5’-nucleotide phosphodiesterase. Effect of divalent cations. Biochim. biophys. Acta, 242, 395–409.CrossRefGoogle Scholar
  7. CHEUNG, W.Y. (1980a). Calmodulin plays a pivotal role in cellular regulation. Science, 207, 19–27.CrossRefGoogle Scholar
  8. CHEUNG, W.Y. (1980b). Calcium and Cell Function, Vol. 1, Calmodulin, New York: Academic Press.Google Scholar
  9. CHEUNG, W.Y. (1984). Calmodulin. Its potential role in cell proliferation and heavy metal toxicity. Fedn Proc. (in press).Google Scholar
  10. DEDMAN, J.R., POTTER, J.D., JACKSON, R.L., JOHNSON, J.D. & MEANS, A.R. (1977). Physicochemical properties of rat testis Ca2+-dependent regulator protein of cyclic nucleotide phosphodiesterase. J. biol. Chem., 252, 8415–8422.Google Scholar
  11. DELVILLE, A., GRAND JEAN, J., LASZLO, P., GERDAY, C., BRZESKA, H. & DRABIKOWSKI, W. (1980). Sodium-23 nuclear magnetic resonance as an indicator of sodium binding to calmodulin and tryptic fragments in relation to calcium content. Eur. J. Biochem., 109, 515–522.CrossRefGoogle Scholar
  12. DOUGLAS, W.W. (1974). Involvement of calcium in exocytosis and the exocytosis-vesiculation sequence. Biochem. Soc. Symp., 39, 1–28.Google Scholar
  13. HORROCKS, W., SCHMIDT, G.F., SUDNICK, D.R., KITTRELL, C. & BERNHEIM, R.A. (1977). Laser-induced lanthanide ion luminescence lifetime measurements by direct excitation of metal-ion levels — New class of structural probe for calcium-binding proteins and nucleic acids. J. Am. Chem. Soc, 99, 2378–2380.CrossRefGoogle Scholar
  14. JACOBSON, K.B. & TURNER, J.E. (1980). The interaction of cadmium and certain other metal ions with proteins and nucleic acids. Toxicology, 16, 1–37.CrossRefGoogle Scholar
  15. KILHOFFER, M.-C, DEMAILLE, J.G. & GERARD, D. (1980a). Terbium as luminescent probe of calmodulin calcium-binding sites. FEBS Lett., 116, 269–272.CrossRefGoogle Scholar
  16. KILHOFFER, M.-C, GERARD, D. & DEMAILLE, J.G. (1980b). Terbium binding to octopus calmodulin provides the complete sequence of ion binding. FEBS Lett., 120, 99–103.CrossRefGoogle Scholar
  17. KINCAID, R.L., VAUGHAN, M. & OSBORNE, J.C., Jr (1982). Ca2+-dependent interaction of 5-dimethylamino-naphthalene-1-sulfonyl-calmodulin with cyclic nucleotide phosphodiesterase, calcineurin and troponin I. J. biol. Chem., 257, 10638–10643.Google Scholar
  18. KLEE, C.B. & T.C. VANAMAN (1982). Calmodulin. Adv. Protein Chem., 35, 213–221.CrossRefGoogle Scholar
  19. KOSOWER, N.S. & KOSOWER, E.M. (1978). The glutathione status of cells. Int. Rev. Cytol., 54, 109–160.CrossRefGoogle Scholar
  20. KRETSINGER, R.H. (1976). Calcium-binding proteins. A. Rev. Biochem., 45, 239–266.CrossRefGoogle Scholar
  21. KRETSINGER, R.H. (1980). Mechanisms of selective signalling by calcium. Neurosciences Res. Prog. Bull., 19(3), 264–277.Google Scholar
  22. KRETSINGER, R.H. & BARRY, CD. (1975). The predicted structure of the calcium-binding component of troponin. Biochim. biophys. Acta, 405, 40–52.CrossRefGoogle Scholar
  23. LAEMMLI, U.K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 227, 680–685.CrossRefGoogle Scholar
  24. LEVIN, R.M. & WEISS, B. (1976). Mechanism by which psychotropic drugs inhibit adenosine cyclic 3’, 5’-monophosphate phosphodiesterase in brain. Mol. Pharmac, 12, 581–589.Google Scholar
  25. LIN, Y.M., LIU, Y.P. & CHEUNG, W.Y. (1974). Cyclic 3’, 5’-nucleotide phosphodiesterase. Purification, characterization and active form of the protein activator from bovine brain. J. biol. Chem., 249, 4943–4954.Google Scholar
  26. MARTIN, R.B. & RICHARDSON, F.S. (1979). Lanthanides as probes for calcium in biological systems. Q. Rev. Biophys., 12, 181–209.CrossRefGoogle Scholar
  27. MEANS, A.R., LAGACE, L., GUERRIERO, V., Jr & CHAFOULEAS, J.G. (1982). Calmodulin as a mediator of hormone action and cell regulation. J. Cell Biochem., 20, 317–330.CrossRefGoogle Scholar
  28. PERRIE, W.T. & PERRY, S.V. (1970); An electrophoretic study of the low-molecular weight components of myosin. Biochem. J., 119, 31–38.CrossRefGoogle Scholar
  29. RASMUSSEN, H. & GOODMAN, D.B. (1977). Relationships between calcium and cyclic nucleotides in cell activation. Physiol. Rev., 57, 421–509.Google Scholar
  30. RICHMAN, P.G. & KLEE, C.B. (1978). Conformation dependent nitration of the protein activator of cyclic adenosine 3’, 5’-monophosphate phosphodiesterase. Biochemistry, 17, 928–935.CrossRefGoogle Scholar
  31. ROSE, B. & LOWENSTEIN, W.R. (1975). Calcium ion distribution in cytoplasm visualized by aequorin: Diffusion in cytosol restricted by energized sequestering. Science, 190, 1204–1206.CrossRefGoogle Scholar
  32. RUBIN, R.P. (1982). Calcium and Cellular Secretion, New York: Plenum Press.CrossRefGoogle Scholar
  33. SAMARAWICKRAMA, G.P. (1979). Biological effects of cadmium in mammals. In Topics in Environmental Health, Vol. 2. Webb, E. (ed.) pp. 341–422, New York: Elsevier/North Holland Biomedical Press.Google Scholar
  34. SEAMON, K.B. & MORE, B.W. (1980). Octopus calmodulin. Structural comparison with bovine brain calmodulin. J. biol. Chem., 255, 11644–11647.Google Scholar
  35. TAKAI, Y., KISHIMOTO, A. & NISHIZUKA, Y. (1982). Calcium and phospholipid turnover as transmembrane signalling for protein phosphorylation. In Calcium and Cell Function, Vol. II. Cheung, W.Y. (ed.) pp. 386–412, New York: Academic Press.Google Scholar
  36. THULIN, E., ANDERSON, A., DRAKENBERG, T., FORSEN, S. & VOGEL, HJ. (1984). Metal ion and drug binding to proteolytic fragments of calmodulin: Proteolytic, cadmium113 and protein nuclear magnetic resonance studies. Biochemistry, 23, 1862–1870.CrossRefGoogle Scholar
  37. UDENFRIEND, S. (1962). In Fluorescence Assay in Biology and Medicine, Vol. I, p. 28, New York: Academic Press.Google Scholar
  38. VALLEE, B.L. & ULMER, D.D. (1972). Biochemical effects of mercury, cadmium and lead. A. Rev. Biochem., 41, 91–128.CrossRefGoogle Scholar
  39. VAN ELDIK, L.J., ZENDEGUI, J.G., MARSHAK, D.R. & WATTERSON, D.M. (1982). Calcium-binding proteins and the molecular basis of calcium action. Int. Rev. Cytol., 77, 1–61.CrossRefGoogle Scholar
  40. WALLACE, R.W. & CHEUNG, W.Y. (1979). Calmodulin: Production of an antibody in rabbit and development of a radioimmunoassay. J. biol. Chem., 254, 6564–6571.Google Scholar
  41. WALLACE, R.W., TALLANT, E.A., DOCKTER, M.E. & CHEUNG, W.Y. (1982). Calcium binding domains of calmodulin. J. biol. Chem., 257, 1845–1854.Google Scholar
  42. WANG, CA., AQUARON, R.R., LEA VIS, P.C. & GERGELY, J. (1982). Metal-binding properties of calmodulin. Eur. J. Biochem., 124, 7–12.CrossRefGoogle Scholar
  43. WANG, J.H. & WAISMAN, D.M. (1979). Calmodulin and its role in the second messenger system. Curr. Top. Cell Regul., 15, 47–107.CrossRefGoogle Scholar
  44. WATTERSON, D.M., SHARIEF, F. & VANAMAN, T.C. (1980). The complete amino acid sequence of Ca2+-dependent modulator protein (calmodulin) of bovine brain. J. biol. Chem., 255, 462–475.Google Scholar
  45. WEAST, R.C. & ASTLE, M.J. (eds.) (1982). Handbook Chem. Phys., 62nd Edn., CRC Press, Boca Raton, FL, F-175.Google Scholar
  46. WEBB, M. (1979). The metallothioneins. In Topics in Environmental Health, Vol. 2, Webb, M. (ed.) pp. 195–266, New York: Elsevier/North-Holland Biomedical Press.Google Scholar
  47. ZYSK, J.R., CHAO, S.H. & CHEUNG, W.Y. Mercuric ion activates calmodulin-dependent phosphodiesterase. Biochem. biophys. Res. Commun. (submitted).Google Scholar

Copyright information

© Macmillan Publishers Limited 1984

Authors and Affiliations

  • W. Y. Cheung

There are no affiliations available

Personalised recommendations