Skip to main content

The role of inositol phospholipid turnover in the actions of peptide secretagogues

  • Chapter
  • 41 Accesses

Abstract

Although the role of calcium in stimulus-secretion coupling was established by the independent efforts of William Douglas (Douglas, 1968) and Sir Bernard Katz (Katz, 1969) two to three decades ago, the various steps in this process are still poorly understood. One approach to elucidating the nature of the cellular events associated with activation of secretion concerns the turnover of membrane phospholipids. Particular attention has focused on a relatively minor membrane component, phosphatidylinositol (PI), with regard to its participation in receptor-response coupling in diverse cell types, including those specialized to secrete. Thus, both the turnover of the polar head group and arachidonic acid in position 2 of PI—which are catalysed by phospholipase C and A2, respectively—have been implicated in events associated with the secretory process (Laychock & Putney, 1982).

This is a preview of subscription content, log in via an institution.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • AGRANOFF, B.W., MURTHY, P. & SEGUIN, E.B. (1983). Thrombin-induced phosphodiesteratic cleavage of phosphatidylinositol bisphosphate in human platelets. J. biol. Chem., 258, 2076–2078.

    Google Scholar 

  • BERRIDGE, M.J. (1983). Rapid accumulation of inositol triphosphate reveals that agonists hydrolyse polyphosphoinositides instead of phosphatidylinositol. Biochem. J., 212, 849–858.

    Article  Google Scholar 

  • BERRIDGE, M.J., DAWSON, R.M.C., DOWNES, C.P., HESLOP, J.P. & IRVINE, R.F. (1983). Changes in the levels of inositol phosphates after agonist-dependent hydrolysis of membrane phosphoinositides. Biochem. J., 212, 473–482.

    Article  Google Scholar 

  • BERRIDGE, M.J., DOWNES, C.P. & HANLEY, M.R. (1982). Lithium amplifies agonist-dependent phosphatidyl-inositol responses in brain and salivary glands. Biochem. J., 206, 587–595.

    Article  Google Scholar 

  • COCKCROFT, S., BENNETT, J.P. & GOMPERTS, B.D. (1981). The dependence on Ca2+ of phosphatidylinositol breakdown and enzyme secretion in rabbit neutrophils stimulated by formyl-methionyl-leucyl-phenylalanine or ionomycin. Biochem. J., 200, 501–508.

    Article  Google Scholar 

  • DOUGLAS, W.W. (1968). Stimulus-secretion coupling: the concept and clues from chromaffin and other cells. Br. J. Pharmac, 34, 451–474.

    Article  Google Scholar 

  • ELLIOTT, M.E., FARESE, R.V. & GODFRAIND, T.L. (1983). Effects of angiotensin II and dibutyryl cyclic adenosine monophosphate on phosphatidylinositol metabolism, 45Ca2+ fluxes, and aldosterone synthesis in bovine adrenal glomerulosa cells. Life Sci., 33, 1771–1778.

    Article  Google Scholar 

  • FRANSON, R.C. & WAITE, M.B. (1978). Relation between calcium requirement, substrate charge, and rabbit polymorphonuclear leucocyte phospholipase A2 activity. Biochemistry, 17, 4029–4033.

    Article  Google Scholar 

  • GUNTHER, G.R. (1981). Effect of 12–0-tetradecanoyl-phorbol-13-acetate on Ca2+ efflux and protein discharge in pancreatic acini. J. biol Chem., 256, 12040–12045.

    Google Scholar 

  • HALENDA, S.P. & RUBIN, R.P. (1982). Phospholipid turnover in isolated rat pancreatic acini. Consideration of the relative roles of phospholipase A2 and phospholipase C. Biochem. J., 208, 713–721.

    Article  Google Scholar 

  • HOKIN, L.E. (1968). Dynamic aspects of phospholipids during protein secretion. Int. Rev. Cytol., 23, 187–208.

    Article  Google Scholar 

  • HOKIN, L.E. & HOKIN, M.R. (1955). Effects of acetylcholine on the turnover of phosphoryl units in individual phospholipids of pancreas slices and brain cortex slices. Biochim. biophys. Acta, 18, 102–110.

    Article  Google Scholar 

  • HOKIN, M.R. (1974). Breakdown of phosphatidylinositol in the pancreas in response to pancreozymin. In Secretory Mechanisms of Exocrine Glands, Thorn, N.A. & Petersen, O.H. (eds), pp. 101–115, Academic Press: London.

    Google Scholar 

  • KAIBUCHI, K., SANO, K., HOSHUIMA, M., TAKAI, Y. & NISHIZUKA, Y. (1982). Phosphatidylinositol turnover in platelet activation; calcium mobilization and protein phosphorylation. Cell Calcium, 3, 323–335.

    Article  Google Scholar 

  • KATZ, B. (1969). The Release of Neural Transmitter Substance, Springfield, Illinois, USA: Charles C. Thomas.

    Google Scholar 

  • KRAMER, C.M., FRANSON, R.C. & RUBIN, R.P. (1984). Regulation of phosphatidylinositol turnover, calcium metabolism and enzyme secretion by phorbol dibutyrate in neutrophils. Lipids (in press).

    Google Scholar 

  • LAPETINA, E.G. (1982). Regulation of arachidonic acid production: role of phospholipases C and A2. Trends Pharmac. Sci., 3, 115–118.

    Article  Google Scholar 

  • LAYCHOCK, S.G. & PUTNEY, J.W., Jr (1982). Roles of Phospholipid Metabolism in Secretory Cells. In Cellular Regulation of Secretion and Release, Conn, P.M. (ed.), pp. 53–105. London: Academic Press.

    Chapter  Google Scholar 

  • MARTIN, T.F.J. (1984). Thyrotropin-releasing hormone rapidly activates the phosphodiester hydrolysis of polyphosphoinositides in GH3 pituitary cells. J. biol. Chem., 259, 14816–14822.

    Google Scholar 

  • MICHELL, R.H. (1975). Inositol phospholipids and cell surface receptor function. Biochim. biophys. Acta, 415, 81–147.

    Article  Google Scholar 

  • MICHELL, R.H., KIRK, C. J., JONES, L.M., DOWNES, C.P., & CREBA, J.A. (1981). The stimulation of inositol lipid metabolism that accompanies calcium mobilization in stimulated cells: defined characteristics and unanswered questions. Phil. Trans. R. Soc. B., 296, 123–137.

    Article  Google Scholar 

  • NACCACHE, P.H., SHAAFI, R.I., BORGEAT, P. & GOETZL, E.J. (1981). Mono- and dihydroxyeicosate-traenoic acids alter calcium homeostasis in rabbit neutrophils. J. clin. Invest., 67, 1584–1587.

    Article  Google Scholar 

  • NISHIZUKA, Y. (1983). Calcium, phospholipid turnover and transmembrane signalling. Phil. Trans. R. Soc. L.B., 302, 101–112.

    Article  Google Scholar 

  • ORON, Y., LOWE, M. & SELINGER, Z. (1975). Incorporation of inorganic [32P] phosphate into rat parotid phosphatidylinositol. Induction through activation of alpha-adrenergic and cholinergic receptors and relation to K+ release. Mol Pharmac, 11, 79–86.

    Google Scholar 

  • PUTNEY, J.W., Jr, BURGESS, G.M., HALENDA, S.P., MCKINNEY, J.S. & RUBIN, R.P. (1983). Effects of secretagogues on [32P] phosphatidylinositol 4,5-bis-phosphate metabolism in the exocrine pancreas. Biochem. J., 212, 483–488.

    Article  Google Scholar 

  • REBECCHI, M.J., KOLESNICK, R.N. & GERSHENGORN, M.C. (1983). Thyrotropin-releasing hormone stimulates rapid loss of phosphatidylinositol and its conversion to 1,2-diacylglycerol and phosphatidic acid in rat mam-motropic pituitary cells. J. biol. Chem., 258, 227–234.

    Google Scholar 

  • RINK, T.J., SANCHEZ, A. & HALLAM, T.J. (1983). Diacyl-glycerol and phorbol ester stimulate secretion without raising cytoplasmic free calcium in human platelets. Nature, 305, 317–319.

    Article  Google Scholar 

  • RUBIN, R.P., GODFREY, P.P., CHAPMAN, D.A. & PUTNEY, J.W., Jr (1984). Secretagogue induced formation of inositol phosphates in rat exocrine pancreas: implications for a messenger role for inositol triphosphate. Biochem. J., 219, 655–659.

    Article  Google Scholar 

  • RUBIN, R.P., SINK, L.E. & FREER, R.J. (1981a). On the relationship between formyl-methionyl-leucyl-phenylalanine stimulation of arachidonyl phosphatidyl-inositol turnover and lysosomal enzyme secretion by rabbit neutrophils. Mol. Pharmac, 19, 31–37.

    Google Scholar 

  • RUBIN, R.P., SINK, L.E. & FREER, R.J. (1981b). Activation of arachidonyl phosphatidylinositol turnover in rabbit neutrophils by the calcium ionophore A23187. Biochem. J., 194, 497–505.

    Article  Google Scholar 

  • SANKARAN, H., GOLDFINE, I.D., BAILEY, A., LICKO, V., & WILLIAMS, J. A. (1982). Relationship of cholecystokinin receptor binding to regulation of biological functions in pancreatic acini. Am. J. Physiol., 242, G250–G257.

    Google Scholar 

  • SHAAFI, R.I., WHITE, J.R., MOLSKI, T.F.P., SHEFCYK, J., VOLPI, M., NACCACHE, P.W. & FEINSTEIN, M.B. (1983). Phorbol 12-myristate 13-acetate activates rabbit neutrophils without an apparent rise in the level of intracellular free calcium. Biochem. biophys. Res. Commun., 114, 638–645.

    Article  Google Scholar 

  • SHERMAN, W.R., LEAVITT, A.L., HONCHAR, M.P., HALLCHER, L.M. & PHILLIPS, B.E. (1981). Evidence that lithium alters phosphoinositide metabolism: chronic administration elevates primarily d-myo-inositol-l-phosphate in cerebral cortex of the rat. J. Neurochem., 36, 1947–1951.

    Article  Google Scholar 

  • SIESS, W., SIEGEL, F.L. & LAPETINA, E.G. (1983). Arachidonic acid stimulates the formation of 1,2-diacylglycerol and phosphatidic acid in human platelets. J. biol. Chem., 258, 11236–11242.

    Google Scholar 

  • STREB, H., IRVINE, R.F., BERRIDGE, M.J. & SCHULZ, I. (1983). Release of Ca2+ from a nonmitochondrial intracellular store in pancreatic acinar cells by inositol-1,4,5-trisphosphate. Nature, 306, 67–68.

    Article  Google Scholar 

  • TRIFARO, J.M. (1969). The effect of Ca++ omission on the secretion of catecholamines and the incorporation of orthophosphate 32P into nucleotides and phospholipids by bovine adrenal medulla during acetylcholine stimulation. Mol. Pharmac, 5, 424–427

    Google Scholar 

  • VOLPI, M., YASSIN, R., NACCACHE, P.H. & SHAAFl, R.I. (1983). Chemotactic factor causes rapid decreases in phosphatidylinositol, 4,5-bisphosphate and phosphatidylinositol 4-monophosphate in rabbit neutrophils. Biochem. biophys. Res. Commun., 112, 957–964.

    Article  Google Scholar 

  • WATSON, S.P. & DOWNES, C.P. (1983). Substance P induced hydrolysis of inositol phosphlipids in guinea-pig ileum and rat hypothalamus. Eur. J. Pharmac., 93, 245–253.

    Article  Google Scholar 

  • WRENN, R.W. (1983). Phospholipid-sensitive calcium-dependent protein kinase and its endogenous substrate proteins in rat pancreatic acinar cells. Life Sci. 32, 2385–2392.

    Article  Google Scholar 

  • YANO, K., NAKASHIMA, S. & NOZAWA, Y. (1983). Coupling of polyphosphoinositide breakdown with calcium efflux in formyl-methionyl-leucyl phenylalanine-stimulated rabbit neutrophils. FEB S Lett., 161, 296–300.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

William Paton James Mitchell Paul Turner

Copyright information

© 1984 Macmillan Publishers Limited

About this chapter

Cite this chapter

Rubin, R.P., Bradford, P.G. (1984). The role of inositol phospholipid turnover in the actions of peptide secretagogues. In: Paton, W., Mitchell, J., Turner, P. (eds) IUPHAR 9th International Congress of Pharmacology. Palgrave, London. https://doi.org/10.1007/978-1-349-86029-6_24

Download citation

Publish with us

Policies and ethics