Advertisement

Physicochemical properties in structure-activity analysis

  • M. S. Tute
Chapter

Abstract

Prominent among the methods of relating structure to biological activity, in order to rationalise drug activity and to predict novel analogues for synthesis, is the quantitative approach popularly known as Hansch Analysis (Hansch et al., 1963; Hansch, 1981). In Hansch Analysis, the biological activities of a parent molecule and a series of simple derivatives are subjected to regression analysis to find an equation relating activity to some combination of parameters representing changes in hydrophobic, electronic, and steric effects within the series. This enables conclusions to be drawn regarding the influence of physicochemical properties on drug transport or on drug binding.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. CHEUNG, H.S., WANG, F.L., ONDETTI, M.A., SABO, E.F. & CUSHMAN, D.W. (1980). Binding of peptide substrates and inhibitors of angiotensin-converting enzyme. J. biol. Chem., 255, 401–407.Google Scholar
  2. CUSHMAN, D.W., CHEUNG, H.S., SABO, E.F. & ONDETTI, M.A. (1977). Design of potent competitive inhibitors of angiotensin-converting enzyme. Carboxyalkanoyl and mercaptoalkanoyl amino acids. Biochemistry, 16, 5484–5491.CrossRefGoogle Scholar
  3. FUJINAGA, M. & JAMES, M.N.G. (1980). SQ 14,225: 1-(D-3-mercapto-2- methyl-propionyl)-L-proline. Acta cryst., B36, 3196–3199.CrossRefGoogle Scholar
  4. HAGLER, A.T., HULER, E. & LIFSON, S. (1974). Energy functions for peptides and proteins. Derivation of a consistent force field including the hydrogen bond from amide crystals. J. Am. chem. Soc, 96, 5319–5327.CrossRefGoogle Scholar
  5. HANSCH, C, MUIR, R.M., FUJITA, T., MALONEY, P.P., GEIGER, F. & STREICH, M. (1963). The correlation of biological activity of plant growth regulators and Chloromycetin derivatives with Hammett constants and partition coefficients. J. Am. chem. Soc., 84, 2817–2824.CrossRefGoogle Scholar
  6. HANSCH, C, DEUTSCH, E.W. & NELSON SMITH, R. (1965). The use of substituent constants and regression analysis in the study of enzymatic reaction mechanisms. J. Am. chem. Soc, 87, 2738–2742.CrossRefGoogle Scholar
  7. HANSCH, C. (1981). The physicochemical approach to drug design and discovery (QSAR). Drug Development Research, 1, 267–309.CrossRefGoogle Scholar
  8. HASSALL, C.H., KRÖHN, A., MOODY, C.J. & THOMAS, W.A. (1984). The design and synthesis of new triazolo, pyrazolo-, and pyridazo-pyridazine derivatives as inhibitors of angiotensin converting enzyme. J. chem. Soc. Perkin I, 155–164.CrossRefGoogle Scholar
  9. KIM, D.H., GUINOSSO, C.J., BUZBY, G.C., HERBST, D.R., McCAULLY, R.J., WICKS, T.C. & WENDT, R.L. (1983). Mercaptopropanoyl-indoline-2-carboxylic acids and related compounds as potent angiotensin converting enzyme inhibitors and antihypertensive agents. J. med. Chem., 26, 394–403.CrossRefGoogle Scholar
  10. LIPSCOMB, W.N., REEKE, G.N., HARTSUCK, J. A., QUIOCHO, F.A. & BETHGE, P.H. (1970). The structure of carboxypeptidase A. VIII: Atomic interpretation at 0.2nm resolution, a new study of the complex of glycyl-L-tyrosine with CPA, and mechanistic deductions. Phil. Trans. R. Soc, B257, 177–214.CrossRefGoogle Scholar
  11. MONZINGO, A.F. & MATTHEWS, B.W. (1982). Structure of a mercaptan-thermolysin complex illustrates mode of inhibition of zinc proteases by substrate-analogue mercaptans. Biochemistry, 21, 3390–3394.CrossRefGoogle Scholar
  12. NORTH, A.C.T. (1982). Use of interactive computer graphics in studying molecular structures and interactions. Chem. and Ind., 221–225.Google Scholar
  13. OSAWA, E. & MUSSO, H. (1982). Application of molecular mechanics calculations to organic chemistry. Top. Stereochem., 13, 117–193.Google Scholar
  14. PATCHETT, A.A., HARRIS, E., TRISTRAM, E.W., WYVRATT, M.J., WU, M.T., TAUB, D. & 21 OTHERS. (1980). A new class of angiotensin-converting enzyme inhibitors. Nature, 288, 280–283.CrossRefGoogle Scholar
  15. PETRILLO, E.W. & ONDETTI, M.A. (1982). Angiotensinconverting enzyme inhibitors: medicinal chemistry and biological actions. Med. Res. Revs., 2, 1–41.CrossRefGoogle Scholar
  16. SHAPIRO, R. & RIORDAN, J.F. (1983). Critical lysine residue at the chloride binding site of angiotensin converting enzyme. Biochemistry, 22, 5315–5321.CrossRefGoogle Scholar
  17. SUTTON, L.E. (1958,1965). Tables of interatomic distances and configuration in molecules and ions. Special publication nos. 11,18. The Chemical Society, London.Google Scholar
  18. WHITE, D.N.J. & BOVILL, M.J. (1977). Molecular mechanics calculations on alkanes and non-conjugated alkenes. J. chem. Soc. Perkin II, 1610–1623.CrossRefGoogle Scholar

Copyright information

© Macmillan Publishers Limited 1984

Authors and Affiliations

  • M. S. Tute
    • 1
  1. 1.Pfizer Central ResearchPfizer LtdKentUK

Personalised recommendations