The Structural Heterogeneity of Central Nervous Tissue

  • S. L. Palay
  • V. Chan-Palay
Chapter

Abstract

Of all the tissues in the body, the nervous system possesses cells with the most extended form and the greatest range of size. In an animal like man, nerve cells can be from 20 or 30 μm to 2 m long. Their shapes can be just as various. In nearly all parts of the nervous system, neurons and parts of neurons of various dimensions and shapes are intertwined together in a tissue of extraordinary complexity and heterogeneity. This heterogeneity expresses two of the organizational principles of the nervous system. The first principle is the segregation of functions, which is evidenced, at least morphologically, by the appearance of white matter and grey matter, the clustering of the peri-karya of neurons having similar functional relations into nuclei, and the bundling of nerve fibres into tracts, commissures, and fasciculi; in short, by the whole apparatus of traditional neuroanatomy. This anatomical complexity is actually a consequence of a more fundamental principle inherent in the architecture of neurons, the segregation of functions within the cell. The second principle is expressed at a cellular level, by the enormous extent of the cell surface, the spatial separation of receptive, conducting, and transmitting portions of the cell, the almost complete restriction of protein synthesis to the perikaryon, and the differential distribution of intracellular organelles in the cytoplasm. The nerve cell itself is thus divided up into compartments, some of which have clear morphological boundaries set by quantitative differences in their contents or by membranous interfaces.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andres, K. H. (1961). Z. Zeilforsch., 55, 1–48.CrossRefGoogle Scholar
  2. Billings, S. M., and Swartz, F. J. (1969). Z. Anat. Entwickl.-Gesch., 129, 14–23.CrossRefGoogle Scholar
  3. Bloom, F. E. (1970). Int. Rev. Biol., 13, 27–66.Google Scholar
  4. Brightman, M. W. (1967). In Prog. Brain Res., 29, Brain Barrier Systems, p. 19. Ed. by Lajtha, A., and Ford, D. H. Amsterdam: Elsevier.Google Scholar
  5. Brightman, M. W., and Reese, T. S. (1969). J. Cell Biol., 40, 648–77.CrossRefGoogle Scholar
  6. Chan-Palay, V., and Palay, S. L. (1971). Z. Anat. Entwickl.-Gesch., 133, 247–73.CrossRefGoogle Scholar
  7. Coggeshall, R. E., Yaksta, B. A., and Swartz, F. J. (1970). Chromosoma, 32, 205–12.Google Scholar
  8. Conradi, S. (1966). Acta Soc. Med. Upsal., 71, 281–4.Google Scholar
  9. Conradi, S. (1969). Acta Physiol. Scand., Suppl. 332, 65–84.Google Scholar
  10. Droz, B. (1965). C.R. Acad. Sci. Paris, 260, 320–2.Google Scholar
  11. Droz, B. (1967). J. Microscopie, 6, 201–28.Google Scholar
  12. Friend, D. S., and Farquhar, M. G. (1967). J. Cell Biol, 35, 357–76.CrossRefGoogle Scholar
  13. Gray, E. G. (1959). J. Anat., 93, 420–33.Google Scholar
  14. Gray, E. G., and Guillery, R. W. (1963). J. Anat., 97, 389–92.Google Scholar
  15. Herman, C. J., and Lapham, L. W. (1968). Science, 160, 537.CrossRefGoogle Scholar
  16. Holtzman, E., Novikoff, A. B. and Villaverde, H. (1967). J. Cell Biol, 33, 419–35.CrossRefGoogle Scholar
  17. Jamieson, J. D., and Palade, G. E. (1967a). J. Cell Biol, 34, 577–96.CrossRefGoogle Scholar
  18. Jamieson, J. D., and Palade, G. E. (1967b). J. Cell Biol, 34, 597–615.CrossRefGoogle Scholar
  19. Kaiserman-Abramof, I. R., and Palay, S. L. (1969). In Neurobiology of Cerebellar Evolution and Development, p. 171. Ed. by Llinás, R. Chicago: AMA-ERF Institute for Biomedical Research.Google Scholar
  20. Kohno, K. (1964). Bull. Tokyo Med. Dent. Univ., 11, 411–42.Google Scholar
  21. Lapham, L. W. (1968). Science, 159, 310–12.CrossRefGoogle Scholar
  22. Meldolesi, J., Jamieson, J. D., and Palade, G. E. (1971). J. Cell Biol., 49, 150–8.CrossRefGoogle Scholar
  23. Novikoff, A. B. (1967). In The Neuron, p. 255. Ed. by Hydén, H. Amsterdam: Elsevier.Google Scholar
  24. Orkand, R. K. (1969). In Basic Mechanisms of the Epilepsies, p. 737. Ed. by Jasper, H. H., Ward, A. A., and Pope, A. Boston: Little Brown.Google Scholar
  25. Palay, S. L. (1964). In Brain Function, 2, RNA and Brain Function; Memory and Learning, p. 69. Ed. by Brazier, M. A. B. University of California Press.Google Scholar
  26. Palay, S. L., Sotelo, C., Peters, A., and Orkand, P. M. (1968). J. Cell Biol., 38, 193–201.CrossRefGoogle Scholar
  27. Peters, A., and Kaiserman-Abramof, I. R. (1970). Amer. J. Anat., 127, 321–55.CrossRefGoogle Scholar
  28. Peters, A., Palay, S. L., and Webster, H. de F. (1970). The Fine Structure of the Nervous System. The Cells and their Processes. New York: Hoeber/Harper and Row.Google Scholar
  29. Peters, A., Proskauer, C. C., and Kaiserman-Abramof, I. R. (1968). J. Cell Biol, 39, 604–19.CrossRefGoogle Scholar
  30. Pomerat, C. M., Hendelman, W. J., Raiborn, C. W., and Massey, J. F. (1967). In The Neuron, p. 119. Ed. by Hydén, H. Amsterdam: Elsevier.Google Scholar
  31. Reese, T. S., and Karnovsky, M. J. (1967). J. Cell Biol, 34, 207–17.CrossRefGoogle Scholar
  32. Rosenbluth, J. (1962). J. Cell Biol, 13, 405–21.CrossRefGoogle Scholar
  33. Sandritter, W., Nováková, V., Pilny, J., and Kiefer, G. (1967). Z. Zellforsch., 80, 145–52.CrossRefGoogle Scholar
  34. Sotelo, C. (1969). In Neurobiology of Cerebellar Evolution and Development, p. 327. Ed. by Llinás, R. Chicago: AMA-ERF Institute for Biomedical Research.Google Scholar
  35. Sotelo, C., and Palay, S. L. (1970). Brain Res., 18, 93–115.CrossRefGoogle Scholar
  36. Uchizono, K. (1969). In Neurobiology of Cerebellar Evolution and Development, p. 549. Ed. by Llinás, R. Chicago: AMA-ERF Institute for Biomedical Research.Google Scholar
  37. Wuerker, R. B., and Palay, S. L. (1969). Tissue and Cell, 1, 387–402.CrossRefGoogle Scholar
  38. Zelená, J. (1970). Brain Res., 24, 359–63.CrossRefGoogle Scholar

Copyright information

© The Contributors 1973

Authors and Affiliations

  • S. L. Palay
  • V. Chan-Palay

There are no affiliations available

Personalised recommendations