Advertisement

Tests of gas exchange function

  • G. J. Gibson
Chapter

Abstract

The exchange of oxygen for carbon dioxide depends on several physical and chemical processes and its degree of success is determined by their overall integration. If, to take the extreme case, all the ventilation were to go to one lung and the total perfusion went to the other, no gas exchange would occur. The importance of matching ventilation to perfusion and their capacity for adjustments was recognised by Haldane and other pioneers in the field and the effect of compensatory changes in local ventilation and/or perfusion in diseased lungs is often to minimise the functional consequences of structural damage.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    West, J. B. and Dollery, C. T. Distribution of blood flow and ventilation-perfusion ratio in the lung measured with radioactive CO2. J. Appl. Physiol. 1960; 15: 405–10.Google Scholar
  2. 2.
    West, J. B. Regional differences in gas exchange in the lung of erect man. J. Appl. Physiol. 1962; 17: 893–8.Google Scholar
  3. 3.
    Connolly, T., Bake, L., Wood, L. and Milic Emili, J. Regional distribution of a 133Xe labelled gas volume inspired at constant flow rates. Scand. J. Respir. Dis. 1975; 56: 150–9.Google Scholar
  4. 4.
    Hughes, J. M. B., Glazier, J. B., Maloney, J. E. and West, J. B. Effect of lung volume on the distribution of pulmonary flow in man. Respir. Physiol. 1968; 4: 58–72.CrossRefGoogle Scholar
  5. 5.
    Agostoni, E., D’Angelo, E. and Bonanni, M. V. The effect of the abdomen on the vertical gradient of pleural surface pressure. Respir. Physiol. 1970; 8: 332–46.CrossRefGoogle Scholar
  6. 6.
    Dosman, J., Grassino, A., Macklem, P. T. and Engel, L. A. Factors influencing the oesophageal pressure gradient in upright man. Physiologist 1975; 18: 194.Google Scholar
  7. 7.
    Engel, L. A. and Macklem, P. T. Gas mixing and distribution in the lung. In: Widdicombe, J. G. (ed.), Respiratory Physiology II (International Review of Physiology vol. 14), London: University Park Press, 1977: 37–82.Google Scholar
  8. 8.
    Cournand, A., Baldwin, E., Darling, R. C. and Richards, D. W. Studies on intrapulmonary mixture of gases. IV Significance of pulmonary emptying rate and simplified open circuit measurement of residual air. I. Clin. Invest. 1941; 20: 681–9.CrossRefGoogle Scholar
  9. 9.
    Chang, S. T., Wang, B. C., Chi, Y. L. and Hsieh, Y. S. Ventilatory components of lungs in relation to sex and age. Am. Rev. Respir. Dis. 1971; 104: 175–81.Google Scholar
  10. 10.
    Robertson, J. S., Siri, W. E. and Jones, H. B. Lung ventilation patterns determined by analysis of nitrogen elimination rates; use of the mass spectrometer as a continuous gas analyser. J. Clin. Invest. 1950; 29: 577–90.CrossRefGoogle Scholar
  11. 11.
    Fleming, G. M., Chester, E. H., Saniie, J. and Saidel, G. M. Ventilation inhomogeneity using multibreath nitrogen washout: comparison of moment ratios and other indexes. Am. Rev. Respir. Dis. 1980; 121: 789–94.Google Scholar
  12. 12.
    Hutchison, A. A., Sum, A. C, Demis, T. A. et al. Moment analysis of multiple breath nitrogen washout in children. Am. Rev. Respir. Dis. 1982; 125: 28–32.Google Scholar
  13. 13.
    Fowler, W. S. Lung function studies III. Uneven pulmonary ventilation in normal subjects and in patients with pulmonary disease. J. Appl. Physiol. 1949; 2: 283–99.Google Scholar
  14. 14.
    Comroe, J. H. and Fowler, W. S. Lung function studies. VI. Detection of uneven alveolar ventilation during a single breath of oxygen. Am. J. Med. 1951; 10: 408–13.CrossRefGoogle Scholar
  15. 15.
    Dollfuss, R. E., Milic Emili, J. and Bates, D. V. Regional ventilation of the lung studied with boluses of xenon 133. Respir. Physiol. 1967; 2: 234–46.CrossRefGoogle Scholar
  16. 16.
    Krogh, M. The diffusion of gases through the lungs of man. J. Physiol. 1915; 49: 271–300.CrossRefGoogle Scholar
  17. 17.
    Gurtner, G. H., Peary, H., Summer, W. and Burns, B. H. Physiological evidence of a specific O2-CO carrier in the lung and placenta. Prog. Respir. Res. 1975; 8: 166–76.CrossRefGoogle Scholar
  18. 18.
    Ogilvie, C. M., Forster, R. E., Blakemore, W. S. and Morton, J. W. A standardized breath holding technique for the clinical measurement of the diffusing capacity of the lung for carbon monoxide. J. Clin. Invest. 1957; 36: 1–17.CrossRefGoogle Scholar
  19. 19.
    McGrath, M. W. and Thomson, M. L. The effect of age, body size and lung volume change on alveolar-capillary permeability and diffusing capacity in man. J. Physiol. 1959; 146: 572–82.CrossRefGoogle Scholar
  20. 20.
    Mitchell, M. M. and Renzetti, A. D. Application of the single breath method of total lung capacity measurement to the calculation of the carbon monoxide diffusing capacity. Am. Rev. Respir. Dis. 1968; 97: 581–4.Google Scholar
  21. 21.
    Lipscomb, D. J., Patel, K. and Hughes, J. M. B. Interpretation of increases in the transfer coefficient for carbon monoxide. Thorax 1978; 33: 728–33.CrossRefGoogle Scholar
  22. 22.
    Roughton, F. J. W. and Forster, R. E. Relative importance of diffusion and chemical reaction rates in determining rate of exchange of gases in human lung, with special reference to true diffusing capacity of pulmonary membrane and volume of blood in the lung capillaries. J. Appl. Physiol. 1957; 11: 290–302.Google Scholar
  23. 23.
    Bates, D. V., Boucot, N. G. and Dormer, A. E. The pulmonary diffusing capacity in normal subjects. J. Physiol. 1955; 129: 237–52.CrossRefGoogle Scholar
  24. 24.
    Filley, G. F., Macintosh, D. J. and Wright, G. W. Carbon monoxide uptake and pulmonary diffusing capacity in normal subjects at rest and during exercise. J. Clin. Invest. 1954; 33: 530–9.CrossRefGoogle Scholar
  25. 25.
    Marshall, R. A rebreathing method for measuring carbon monoxide diffusing capacity. Am. Rev. Respir. Dis. 1977; 115: 537–9.Google Scholar
  26. 26.
    Newth, C. J. L., Cotton, D. J. and Nadel, J. A. Pulmonary diffusing capacity measured at multiple intervals during a single exhalation in man. J. Appl. Physiol. 1977;43: 617–25.Google Scholar
  27. 27.
    Fung, Y. C. and Sobin, S. S. Theory of sheet flow in lung alveoli. J. Appl. Physiol. 1969; 26: 472–88.Google Scholar
  28. 28.
    Hughes, J. M. B. Pulmonary circulation and fluid balance. In: Widdicombe, J. G. (ed.), Respiratory Physiology II (International Review of Physiology vol. 14), London: University Park Press, 1977: 135–183.Google Scholar
  29. 29.
    Permutt, S., Bromberger-Barnea, B. and Bane, H. N. Alveolar pressure, pulmonary venous pressure and the vascular waterfall. Med. Thorac. 1962; 19: 239–60.Google Scholar
  30. 30.
    Krogh, A. and Lindhard, J. Measurements of the blood flow through the lungs of man. Skand. Arch. Physiol. 1912; 27: 100–25.CrossRefGoogle Scholar
  31. 31.
    Cander, L. and Forster, R. E. Determination of pulmonary parenchymal tissue volume and pulmonary capillary blood flow in man. J. Appl. Physiol. 1959; 14: 541–51.Google Scholar
  32. 32.
    Sackner, M. A., Greeneltch, D., Heiman, M. S. et al. Diffusing capacity, membrane diffusing capacity, capillary blood volume, pulmonary tissue volume and cardiac output measured by a rebreathing technique. Am. Rev. Respir. Dis. 1975; 111: 157–65.Google Scholar
  33. 33.
    Williams, S. J., Pierce, R. J., Davies, N. J. H. and Denison, D. M. Methods of studying lobar and segmental function of the lung in man. Br. J. Dis. Chest 1979; 73: 97–112.CrossRefGoogle Scholar
  34. 34.
    Lee, G. de J. and DuBois, A. B. Pulmonary capillary blood flow in man. J. Clin. Invest. 1955; 34: 1380–90.CrossRefGoogle Scholar
  35. 35.
    Rahn, H. A concept of mean alveolar air and the ventilation-blood flow relationships during pulmonary gas exchange. Am. J. Physiol. 1949; 158: 21–30.Google Scholar
  36. 36.
    Riley, R. L. and Cournand, A. “Ideal” alveolar air and the analysis of ventilation-perfusion relationships in the lungs. J. Appl. Physiol. 1949; 1: 825–47.Google Scholar
  37. 37.
    Rahn, H. and Fenn, W. O. A graphical analysis of respiratory gas exchange. Washington DC: American Physiological Society, 1955.Google Scholar
  38. 38.
    Campbell, E. J. M. J. Burns Amberson Lecture. The management of acute respiratory failure in chronic bronchitis and emphysema. Am. Rev. Respir. Dis. 1967; 96: 626–39.Google Scholar
  39. 39.
    West, J. B. State of the art: Ventilation-perfusion relationships. Am. Rev. Respir. Dis. 1977; 116: 919–43.Google Scholar
  40. 40.
    Severinghaus, J. W. Blood gas concentrations. In: Fenn, W. O. and Rahn, H. (eds.), Handbook of Physiology, section 3, Respiration, vol. II, Baltimore: American Physiological Society, 1965: 1475–87.Google Scholar
  41. 41.
    West, J. B. Gas exchange when one lung region inspires from another. J. Appl. Physiol. 1971; 30: 479–87.Google Scholar
  42. 42.
    Gilbert, R. and Keighley, J. F. The arterial/alveolar oxygen tension ratio. An index of gas exchange applicable to varying inspired oxygen concentrations. Am. Rev. Respir. Dis. 1974; 109: 142–5.Google Scholar
  43. 43.
    Gross, R. and Israel, R. H. A graphic approach for prediction of arterial oxygen tension at different concentrations of inspired oxygen. Chest 1981; 79: 311–15.CrossRefGoogle Scholar
  44. 44.
    Wagner, P. D., Saltzman, H. A. and West, J. B. Measurement of continuous distributions of ventilation-perfusion ratios: theory. J. Appl. Physiol. 1974; 36: 585–99.Google Scholar
  45. 45.
    Ball, W. C, Stewart, P. B., Newsham, L. G. and Bates, D. V. Regional pulmonary function studied with xenon 133. J. Clin. Invest. 1962; 41: 519–31.CrossRefGoogle Scholar
  46. 46.
    Dollery, C. T., Hugh Jones, P. and Matthews, C. M. E. Use of radioactive xenon for studies of regional lung function. Br. Med. J. 1962; 2: 1006–16.CrossRefGoogle Scholar
  47. 47.
    Fazio, F. and Jones, T. Assessment of regional ventilation by continuous inhalation of radioactive krypton-81m. Br. Med. J. 1975; 3: 673–6.CrossRefGoogle Scholar
  48. 48.
    Burdine, J. A., Sonnemaker, R. E., Ryder, L. A. and Spjut, H. J. Perfusion studies with technetium 99m human albumin microspheres. Radiology 1970; 95: 101–7.CrossRefGoogle Scholar
  49. 49.
    Hugh Jones, P. and West, J. B. Detection of bronchial and arterial obstruction by continuous gas analysis from individual lobes and segments of the lung. Thorax 1960; 15: 154–64.CrossRefGoogle Scholar
  50. 50.
    Edwards, M. J. and Martin, R. J. Mixing technique for the oxygen-haemoglobin equilibrium and Bohr effect. J. Appl. Physiol. 1966; 21: 1898–1902.Google Scholar
  51. 51.
    Astrup, P., Jorgensen, K., Siggaard-Andersen, O. and Engel, K. The acid-base metabolism: a new approach. Lancet 1960; 1: 1035–9.CrossRefGoogle Scholar
  52. 52.
    Campbell, E. J. M. and Howell, J. B. L. Simple rapid methods of estimating arterial and mixed venous PCO2. Br. Med. J. 1960; 1: 458–62.CrossRefGoogle Scholar
  53. 53.
    McEvoy, J. D. S., Jones, N. L. and Campbell, E. J. M. Mixed venous and arterial PCO2. Br. Med. J. 1974; 4: 687–90.CrossRefGoogle Scholar
  54. 54.
    Henderson, L. J. The theory of neutrality regulation in the animal organism. Am. J. Physiol. 1908; 21: 427–48.Google Scholar
  55. 55.
    Campbell, E. J. M. RIpH. Lancet 1962; 1: 681–3.CrossRefGoogle Scholar
  56. 56.
    Davenport, H. W. ABC of Acid-Base Chemistry, 6th edn, Chicago: University of Chicago Press, 1974.Google Scholar
  57. 57.
    Brackett, N. C, Cohen, J. J., Schwartz, W. B. Carbon dioxide titration curve of normal man. N. Engl. J. Med. 1965; 272: 6–12.CrossRefGoogle Scholar
  58. 58.
    Flenley, D. C. Another non-logarithmic acid-base diagram? Lancet 1971; 1: 961–5.CrossRefGoogle Scholar
  59. 59.
    Cohen, J. J. and Schwartz, W. B. Evaluation of acid-base equilibrium in pulmonary insufficiency. Am. J. Med. 1966; 41: 163–7.CrossRefGoogle Scholar
  60. 60.
    Arbus, G. S., Hebert, L. A., Levesque, P. R. et al. Characterization and applications of the “significance band” for acute respiratory alkalosis. N. Engl. J. Med. 1969; 280: 117–23.CrossRefGoogle Scholar
  61. 61.
    Brackett, N. C, Wingo, C. F., Muren, O. and Solano, J. T. Acid-base response to chronic hypercapnia in man. N. Engl. J. Med. 1969; 280: 124–30.CrossRefGoogle Scholar
  62. 62.
    Grimbert, F., Reynaert, M. and Perret, C. Acid-base response to chronic hypocapnia in man. Bull. Europ. Physiopath. Respir. 1977; 13: 659–67.Google Scholar
  63. 63.
    Bone, J. M., Cowie, J., Lambie, A. T. and Robson, J. S. The relationship between arterial PCO2 and hydrogen ion concentration in chronic metabolic acidosis and alkalosis. Clin. Sci. 1974; 46: 113–23.CrossRefGoogle Scholar
  64. 64.
    Verdon, F., van Melle, G. and Perret, C. Respiratory response to acute metabolic acidosis. Bull. Europ. Physiopath. Respir. 1981; 17: 223–35.Google Scholar

Copyright information

© G. J. Gibson 1984

Authors and Affiliations

  • G. J. Gibson
    • 1
  1. 1.Freeman HospitalNewcastle upon TyneUK

Personalised recommendations