Cardiac disease

  • G. J. Gibson


Interest in the lung function of patients with heart disease has a venerable history and the interactions between the cardiac and respiratory systems in generating dyspnoea have occupied numerous investigators. Heart disease may affect the function of the lungs both directly, for example by reducing their distensibility, and indirectly by a poor cardiac output leading to anaerobic metabolism and increased ventilatory requirements. The likely results of this interaction between heightened demand and impaired pulmonary performance in patients with cardiac problems have been explored using a computer program.1 In an individual patient, however, the attribution of breathlessness to the heart or the lungs or both remains a common and difficult problem, especially since some of the functional changes in patients with cardiac disease resemble those of primary lung or airway disease.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Lipscomb, D. J. and Edwards, R. H. T. A computer simulation of physiological factors contributing to hyperventilation and breathlessness in cardiac patients. Br. J. Dis. Chest 1980; 74: 47–55.CrossRefGoogle Scholar
  2. 2.
    Christie, R. V. and Meakins, J. C. The intrapleural pressure in congestive heart failure and its clinical significance. J. Clin. Invest. 1934; 13: 323–45.CrossRefGoogle Scholar
  3. 3.
    Cosby, R. S., Stowell, E. C., Hartwig, W. R. and Mayo, M. Pulmonary function in left ventricular failure, including cardiac asthma. Circulation 1957; 15: 492–501.CrossRefGoogle Scholar
  4. 4.
    Hales, C. A. and Kazemi, H. Pulmonary function after uncomplicated myocardial infarction. Chest 1977; 72: 350–8.CrossRefGoogle Scholar
  5. 5.
    Hales, C. A. and Kazemi, H. Small airways function in myocardial infarction. N. Engl. J. Med. 1974; 290: 761–5.CrossRefGoogle Scholar
  6. 6.
    Collins, J. V., Cochrane, G. M., David, J. et al. Some aspects of pulmonary function after rapid sahne infusion in healthy subjects. Clin. Sci. 1973; 45: 407–10.CrossRefGoogle Scholar
  7. 7.
    Pain, M. C. F., Stannard, M. and Sloman, G. Disturbances of pulmonary function after acute myocardial infarction. Br. Med. J. 1967; 2: 591–4.CrossRefGoogle Scholar
  8. 8.
    Filmore, S. J., Shapiro, M. and Killip, T. Arterial oxygenation in acute myocardial infarction: serial analysis of clinical state and blood gas changes. Am. Heart J. 1970; 79: 620–9.CrossRefGoogle Scholar
  9. 9.
    Saunders, K. B. Alveolar-arterial gradient for oxygen in heart failure. Lancet 1965; 2: 160–2.CrossRefGoogle Scholar
  10. 10.
    Al Bazzaz, F. J. and Kazemi, H. Arterial hypoxemia and distribution of pulmonary perfusion after uncomplicated myocardial infarction. Am. Rev. Respir. Dis. 1972; 106: 721–8.CrossRefGoogle Scholar
  11. 11.
    West, J. B. Ventilation-perfusion relationships. Am. Rev. Respir. Dis. 1977; 116: 919–43.Google Scholar
  12. 12.
    Saunders, K. B. Physiological deadspace in left ventricular failure. Clin. Sci. 1966; 31: 145–51.Google Scholar
  13. 13.
    Anthonisen, N. R. and Smith, H. J. Respiratory acidosis as a consequence of pulmonary oedema. Ann. Int. Med. 1965; 62: 991–9.CrossRefGoogle Scholar
  14. 14.
    Avery, W. G., Samet, P. and Sackner, M. A. The acidosis of pulmonary oedema. Am. J. Med. 1970; 48: 320–4.CrossRefGoogle Scholar
  15. 15.
    Talner, N. S., Sanyal, S. K., Halloran, K. H. et al. Congestive heart failure in infancy. Pediatrics 1965; 35: 20–6.Google Scholar
  16. 16.
    Pepine, C. J. and Weiner, L. Relationship of anginal symptoms to lung mechanics during myocardial ischaemia. Circulation 1972; 46: 863–9.CrossRefGoogle Scholar
  17. 17.
    Crosbie, W. A. and Parsons, V. Cardiopulmonary function of congested lungs. Q. J. Med. 1974; 43: 215–30.Google Scholar
  18. 18.
    Rhodes, K. M., Evemy, K., Nariman, S. and Gibson, G. J. Relation between severity of mitral valve disease and routine lung function tests in non-smokers. Thorax 1982; 37: 751–5.CrossRefGoogle Scholar
  19. 19.
    Wood, T. E., McLeod, P., Anthonisen, N. R. and Macklem, P. T. Mechanics of breathing in mitral stenosis. Am. Rev. Respir. Dis. 1971; 104: 52–60.Google Scholar
  20. 20.
    von Basch, S. Uer eine Function des Capillardruckes in den Lungenalveolen. Wien Med. Blatt 1887; 10: 466.Google Scholar
  21. 21.
    Gibson, G. J. and Pride, N. B. Pulmonary mechanics in fibrosing alveolitis. Am. Rev. Respir. Dis. 1977; 116: 637–47.CrossRefGoogle Scholar
  22. 22.
    De Troyer, A., Estenne, M. and Yernault, J.-C. Disturbance of respiratory muscle function in patients with mitral valve disease. Am. J. Med. 1980; 69: 867–73.CrossRefGoogle Scholar
  23. 23.
    Aber, C. P. and Campbell, J. A. Significance of changes in the pulmonary diffusing capacity in mitral stenosis. Thorax 1965; 20: 135–45.CrossRefGoogle Scholar
  24. 24.
    Yernault, J.-C., Englert, M. and De Troyer, A. Mechanical and diffusing lung properties in patients with rheumatic valve disease. In: Giuntini, C. and Panuccio, P. (eds), Cardiac Lung, Padua: Piccin, 1979: 35–47.Google Scholar
  25. 25.
    Palmer, W. H., Gee, J. B. L., Mills, F. C. and Bates, D. V. Disturbances of pulmonary function in mitral valve disease. Can. Med. Ass. J. 1963; 89: 744–50.Google Scholar
  26. 26.
    Dollery, C. T. and West, J. B. Regional uptake of radioactive oxygen, carbon monoxide and carbon dioxide in the lungs of patients with mitral stenosis. Circ. Res. 1960; 8: 765–71.CrossRefGoogle Scholar
  27. 27.
    Dawson, A., Rocamora, J. M. and Morgan, J. R. Regional lung function in chronic pulmonary congestion with and without mitral stenosis. Am. Rev. Respir. Dis. 1976; 113: 51–9.Google Scholar
  28. 28.
    Reed, J. W., Ablett, M. and Cotes, J. E. Ventilatory responses to exercise and to carbon dioxide in mitral stenosis before and after valvulotomy: causes of tachypnoea. Clin. Sci. 1978; 54: 9–16.CrossRefGoogle Scholar
  29. 29.
    Rhodes, K. M., Evemy, K., Nariman, S. and Gibson, G. J. Effects of mitral valve surgery on static lung function and exercise performance. To be published.Google Scholar
  30. 30.
    Macintosh, D. J., Sinnot, J. C, Milne, I. G. and Reid, E. A. S. Some aspects of disordered pulmonary function in mitral stenosis. Ann. Int. Med. 1958; 49: 1294–1304.CrossRefGoogle Scholar
  31. 31.
    Singh, T., Dind, P., Chatterjee, S. S. et al. Pulmonary function studies before and after closed mitral valvotomy. Am. Rev. Respir. Dis. 1970; 101: 62–6.Google Scholar
  32. 32.
    Cellerino, A., Andreone, A. and Gaetini, A. Blood distribution through the lungs before and after mitral commissurotomy: a quantitative assessment by 131I. J. Cardiovasc. Surg. 1971; 12: 66–70.Google Scholar
  33. 33.
    Gilmour, D. G., Spiro, S. G., Raphael, M. J. and Freedman, S. Exercise tests before and after heart valve replacement. Br. J. Dis. Chest 1976; 70: 185–94.CrossRefGoogle Scholar
  34. 34.
    Yernault, J.-C. and De Troyer, A. Mechanics of breathing in patients with aortic valve disease. Bull. Europ. Physiopath. Resp. 1980; 16: 491–500.Google Scholar
  35. 35.
    Burgess, J. H. Pulmonary diffusing capacity in disorders of the pulmonary circulation. Circulation 1974; 49: 541–50.CrossRefGoogle Scholar
  36. 36.
    McCredie, R. M., Lovejoy, F. W. and Yu, P. N. Pulmonary diffusing capacity and pulmonary capillary blood volume in patients with intracardiac shunts. J. Lab. Clin. Med. 1964; 63: 914–23.Google Scholar
  37. 37.
    Bedell, G. N. Comparison of pulmonary diffusing capacity in normal subjects and in patients with intracardiac septal defects. J. Lab. Clin. Med. 1961; 57: 269–80.Google Scholar
  38. 38.
    De Troyer, A., Yernault, J.-C. and Englert, M. Mechanics of breathing in patients with atrial septal defect. Am. Rev. Respir. Dis. 1977; 115: 413–21.Google Scholar
  39. 39.
    Linde, L. M., Siegel, S. I., Martelle, R. R. and Simmons, D. H. Lung function in congenital heart disease. Dis. Chest 1964; 46: 46–50.CrossRefGoogle Scholar
  40. 40.
    Lees, M. H., Way, R. C. and Ross, B. B. Ventilation and respiratory gas transfer of infants with increased pulmonary blood flow. Pediatrics 1977; 40: 259–71.Google Scholar
  41. 41.
    Dollery, C. T., West, J. B., Wilcken, D. E. L. et al. Regional pulmonary blood flow in patients with circulatory shunts. Br. Heart J. 1961; 23: 225–35.CrossRefGoogle Scholar
  42. 42.
    Lurie, P. R. Postural effects in tetralogy of Fallot. Am. J. Med. 1953; 15: 297–306.CrossRefGoogle Scholar
  43. 43.
    Edelman, N. H., Lahiri, S., Braudo, L. et al. The blunted ventilatory response to hypoxia in cyanotic congenital heart disease. N. Engl. J. Med. 1970; 282: 405–11.CrossRefGoogle Scholar
  44. 44.
    Davies, H. and Gazetopoulos, N. Dyspnoea in cyanotic congenital heart disease. Br. Heart J. 1965; 27: 28–41.CrossRefGoogle Scholar
  45. 45.
    Haroutunian, L. M., Neill, C. A. and Wagner, H. N. Radioisotope scanning of the lung in cyanotic congenital heart disease. Am. J. Cardiol 1969; 23: 387–95.CrossRefGoogle Scholar
  46. 46.
    Puyau, F. A. and Meckstroth, G. R. Evaluation of pulmonary perfusion patterns in children with tetralogy of Fallot. Am. J. Roentgenol. 1974; 122: 119–24.CrossRefGoogle Scholar
  47. 47.
    MacArthur, C. G. C, Hunter, D. and Gibson, G. J. Ventilatory function in the Eisenmenger syndrome. Thorax 1979; 34: 348–53.CrossRefGoogle Scholar

Copyright information

© G. J. Gibson 1984

Authors and Affiliations

  • G. J. Gibson
    • 1
  1. 1.Freeman HospitalNewcastle upon TyneUK

Personalised recommendations