Diseases of the Blood

  • Ursula B. Wandl

Abstract

Blood formation normally takes part in the bone marrow, where the common pluripotent stem cells give rise to a series of progenitor cells for three main cell lines: red cells, white cells (granulocytes, monocytes, lymphoid cells) and platelets. They mature in the bone marrow and are released into the peripheral blood. The normal blood count measures these cell components. Additionally, a peripheral blood smear is a very important test for corpuscular abnormalities and cell configuration. Thus, in the normal blood test many components can be measured (see Table 27.1).

Keywords

Fatigue Androgen Thrombocytopenia Thrombin Amyloidosis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Unsworth DJ, Lock FJ, Harvey RF. Iron deficiency anemia in premenopausal women [letter, comment]. Lancet 1999; 353: 1100.CrossRefGoogle Scholar
  2. 2.
    Cook JD, Skikne BS. Iron deficiency: Definition and diagnosis. J Intern Med 1989; 226: 349.CrossRefGoogle Scholar
  3. 3.
    Brittenham GM. Disorders of iron metabolism: Iron deficiency and overload. In: Hematology Basic Principles and Practice, 2nd edn. Hoffmann R et al. (eds), Churchill Livingstone, New York 1995.Google Scholar
  4. 4.
    Osaki T et al. The pathophysiology of glossal pain in patients with iron deficiency and anemia. Am J Med Sci 1999; 318: 324.CrossRefGoogle Scholar
  5. 5.
    Bridges KR, Seligman PA. Disorders or iron metabolism. In: Blood: Principles Practice of Hematology, Handin, RI, Lux, SE, Stossel, TP (eds), 1995, Ch49.Google Scholar
  6. 6.
    Van den Broek NR et al. Iron status in pregnant women: which measurements are valid? Br J Hematol 1998; 103: 817.CrossRefGoogle Scholar
  7. 7.
    Malope BI et al. The ratio of serum transferrin receptor and serum ferritin in the diagnosis of iron status. Br J Hematol 2001; 115: 84.CrossRefGoogle Scholar
  8. 8.
    Mast AE et al. Clinical utility of the reticulocyte hemoglobin content in the diagnosis of iron deficiency. Blood 2002; 99: 1489.CrossRefGoogle Scholar
  9. 9.
    Brugnara C et al. Reticulocyte hemoglobin content to diagnose iron deficiency in children. JAMA 1999; 281: 2225.CrossRefGoogle Scholar
  10. 10.
    Wians FH et al. Discriminating between iron deficiency anemia and anemia of chronic disease using traditional indices of iron status vs transferrin receptor concentration. Am J Clin Pathol 2001; 115: 112.CrossRefGoogle Scholar
  11. 11.
    Till SH, Grundmann MJ. Prevalence of concurrent disease in patients with iron deficiency anemia. BMJ 1997; 314: 206.CrossRefGoogle Scholar
  12. 12.
    Pruthi RK, Tefferi A. Pernicious anemia revisited. Mayo Clin Proc 1994: 69: 144.CrossRefGoogle Scholar
  13. 13.
    Anttila P et al. Idiopathic macrocytic anemia in the aged: Molecular and cytogenetic findings. Br J Hematol 1995; 90: 797.CrossRefGoogle Scholar
  14. 14.
    Snower DP, Weil SC. Changing etiology of macrocytosis: Zidovudine as a frequent causative factor. An J Clin Pathol 1993; 99: 57.Google Scholar
  15. 15.
    Burns ER, Reed LJ, Wenz B. Volumetric erythrocyte macrocytosis induced by hydroxyurea. Am J Clin Pathol 1986; 85: 337.Google Scholar
  16. 16.
    Savage D, Lindenbaum, J. Anemia in alcoholics. Medicine 1986; 18: 167.Google Scholar
  17. 17.
    Latvala J et al. Acetaldehyde adducts in blood and bone marrow of patients with ethanol-induced erythrocyte abnormalities. Mol Med 2001; 7: 401.Google Scholar
  18. 18.
    Hoffbrand V, Provan D. ABC of clinical hematology. Macrocytic anemias. BMJ 1997; 314: 430.CrossRefGoogle Scholar
  19. 19.
    Colon-Otero G, Menke D, Hook CC. A practical approach to the differential diagnosis and evaluation of the adult patient with macrocytic anemia. Med Clin North Am 1992; 76: 581.Google Scholar
  20. 20.
    d’Onofrio G et al. Simultaneously measurement of reticulocyte and red blood cell indices in healthy subjects and patients with microcytic and macrocytic anemia. Blood 1995; 85: 818.Google Scholar
  21. 21.
    Naurath HJ et al. Effects of vitamin B12, folate and vitamin B6 supplements in elderly people with normal serum vitamin concentrations. Lancet 1995; 346: 85.CrossRefGoogle Scholar
  22. 22.
    Sumner AE et al. Elevated methylmalonic acid and total homocysteine levels show high prevalence of vitamin B12 deficiency after gastric surgery. Ann Intern Med 1996; 124: 469.CrossRefGoogle Scholar
  23. 23.
    Allen RH, Stabler SP, Savage DG, Lindenbaum, J. Metabolic abnormalities in cobalamin (vitamin B12) and folate deficiency. FASEB J 1993; 7: 1334.Google Scholar
  24. 24.
    Toh BH, van Driel IR, Gleeson PA. Pernicious anemia. N Engl J Med 1997; 337: 1441.CrossRefGoogle Scholar
  25. 25.
    Gueant JL et al. Autoantibodies in pernicious anemia. Type I patients recognize sequence 251–156 of human intrinsic factor. Proc Assoc Am Physicians 1997; 109: 462.Google Scholar
  26. 26.
    Carmel R. Prevalence of undiagnosed pernicious anemia in the elderly. Arch Intern Med 1996; 156: 1097.CrossRefGoogle Scholar
  27. 27.
    Green R, Kinsella LJ. Editorial: Current concepts in the diagnosis of cobalamin deficiency. Neurology 1995; 45: 1435.CrossRefGoogle Scholar
  28. 28.
    Hemmer B et al. Subacute combined degeneration: clinical, electrophysiological, and magnetic resonance imaging findings. J Neurol Neurosurg Psychiatry 1998: 65: 822.CrossRefGoogle Scholar
  29. 29.
    Selhub J et al. Vitamin status and intake as primary determinants of homocysteinemia in an elderly population. JAMA 1993; 270: 2693.CrossRefGoogle Scholar
  30. 30.
    Carmel R. Reassessment of the relative prevalences of antibodies to gastric parietal cell and to intrinsic factor in patients with pernicious anemia: influence of patient age and race. Clin Exp Immunol 1992; 89: 74.CrossRefGoogle Scholar
  31. 31.
    Hathcock JN, Troendle, GJ. Oral cobalamin for the treatment of pernicious anemia. JAMA 1991; 265: 96.CrossRefGoogle Scholar
  32. 32.
    Bailey LB, Gregory JF 3rd. Folate metabolism and requirements. J Nutr 1999; 129: 779.Google Scholar
  33. 33.
    Tefferi A, Pruthi RK. The biochemical basis of cobalamin deficiency. Mayo Clin Proc 1994; 69: 181.CrossRefGoogle Scholar
  34. 34.
    Anthony CA. Megaloblastic anemias. In: Hematology: Basic Principles and Practice, 2nd edn, Hoffman R et al. (eds), Churchill Livingston, New York 1995; 552.Google Scholar
  35. 35.
    Wald JN, Bower C. Folic acid, pernicious anemia and prevention of neural tube defects. Lancet 1994; 41(RR-14): 1.Google Scholar
  36. 36.
    Engelfriet CP, Overbeeke MA, von dem Borne AE. Autoimmune hemolytic anemia. Semin Hematol 1992, 29: 3.Google Scholar
  37. 37.
    Myint H et al. Fludarabine-related autoimmune hemolytic anemia in patients with chronic lymphocytic leukemia. J Clin Oncol 1998; 16: 1885.Google Scholar
  38. 38.
    Gehrs BC, Friedberg RC. Autoimmune hemolytic anemia. Am J Hematol 2002; 69: 258.CrossRefGoogle Scholar
  39. 39.
    Liesveld JL, Rowe JM, Lichtman, MA. Variability of the erythropoietic response in autoimmune hemolytic anemia: Analysis of 109 cases. Blood 1987; 69: 820.Google Scholar
  40. 40.
    Petz, LD. Treatment of autoimmune hemolytic anemias. Curr Opin Hematol 2001; 8: 411.CrossRefGoogle Scholar
  41. 41.
    Lux SE, Palek J. Disorders of the red cell membrane. In: Blood: Principles and Practice of Hematology Handin, RI, Lux SE, Stossel TP (eds), Lippincott, Philadelphia 1995; 1701.Google Scholar
  42. 42.
    Eber SW, Armbrust R, Schroter W. Variable clinical severity of hereditary spherocytosis: Relation to erythrocytic spectrin concentration, osmotic fragility, and autohemolysis. J Pediatr 1990; 117: 409.CrossRefGoogle Scholar
  43. 43.
    Bolton-Maggs PH et al. Guidelines for the diagnosis and management of hereditary spherocytosis. Br J Hematol 2004; 126:455.CrossRefGoogle Scholar
  44. 44.
    Maillet P et al. Spectrin mutations in hereditary elliptocytosis and hereditary spherocytosis. Hum Mutat 1996; 8: 97.CrossRefGoogle Scholar
  45. 45.
    Nagel, RL. Red-cell cytoskeletal abnormalities-implications for malaria. N Engl J Med 1990; 323: 1558.CrossRefGoogle Scholar
  46. 46.
    Tomaselli MB, John KM, Lux SE. Elliptical erythrocyte membrane skeletons and heat sensitive spectrin in hereditary elliptocytosis. Proc Natl Acad Scie USA 1981; 78: 1911.CrossRefGoogle Scholar
  47. 47.
    Iarocci TA et al. Hereditary poikilocytic anemia associated with the co-inheritance of two alpha spectrin abnormalities. Blood 1988; 71: 1390.Google Scholar
  48. 48.
    Glader, BE. Glucose-6-phosphate dehydrogenase deficiency and related disorders of hexose monophosphate shunt and glutathione metabolism. In: Wintrobe’s Clinical Hematology, 10th edn. Lee GR et al (eds), Williams Wilkins, Baltimore: 1176–90.Google Scholar
  49. 49.
    Beutler, E. The molecular biology of enzymes of erythrocyte metabolism. In: The Molecular Basis of Blood Disease, Stamatpyannopoulos G et al. (eds), WB Saunders, Philadelphia, 1993.Google Scholar
  50. 50.
    Beutler E, Mitchell M. Special modifications of the fluorescent screening method for glucose-6-phosphate dehydrogenase deficiency. Blood 1968; 32: 816.Google Scholar
  51. 51.
    Jacob HS. Mechanisms of Heinz body formation and attachment to red cell membrane. Semin Hematol 1970; 7: 341.Google Scholar
  52. 52.
    Arese P, De Flora A. Pathophysiology of hemolysis in glucose-6-phosphate dehydrogenase deficiency. Semin Hematol 1990; 27: 1.Google Scholar
  53. 53.
    Rovira A et al. Stable in vivo expression of glucose-6-phosphate dehydrogenase (G6PD) and rescue of G6PD deficiency in stem cells by gene transfer. Blood 2000; 96: 4111.Google Scholar
  54. 54.
    Miwa S, Fujii H. Molecular basis of erythroenzy-mopathies with hereditary hemolytic anemia: tabulation of mutant enzymes. Am J Hematol 1996; 51(2): 122.CrossRefGoogle Scholar
  55. 55.
    Rothmann JM. Case report: pyruvat kinase deficiency. N J Med 1995; 92(9): 587.Google Scholar
  56. 56.
    Lestas AN, Kay LA, Bellingham AJ. Red cell 3-phosphoglycerate level as a diagnostic aid in pyruvat kinase deficiency. Br J Hemato 1987; 67: 485.CrossRefGoogle Scholar
  57. 57.
    Young, NS. Aplastic anemia. Lancet 1995; 346: 228.CrossRefGoogle Scholar
  58. 58.
    Baum CM et al. Isolation of a candidate human hematopoietic stem-cell population. Proc Natl Acad Sci USA 1992; 89: 2804.CrossRefGoogle Scholar
  59. 59.
    Alter BP, Young NS. Bone marrow failure syndromes. In: Hematology of Infancy and Childhood,Google Scholar
  60. 60.
    Doney K et al. Primary treatment of acquired aplastic anemia: Outcomes with bone marrow transplantation and immunosuppressive therapy. Seattle Bone Marrow Transplant Team. Ann Intern Med 1997; 126: 107.CrossRefGoogle Scholar
  61. 61.
    Edwards CQ, Kushner JP. Screening for hemochromatosis. N Engl J Med 1993; 328: 1616.CrossRefGoogle Scholar
  62. 62.
    Niederau C, Strohmeyer G, Stremmel W. Epidemiology, clinical spectrum, and prognosis of hemochromatosis. Adv Exp Med Biol 1994; 356: 293.CrossRefGoogle Scholar
  63. 63.
    Summers KN, Halliday JW, Powell LW. Identification of homozygous hemochromatosis subjects by measurement of hepatic iron index. Hepatology 1990; 12: 20.CrossRefGoogle Scholar
  64. 64.
    Barton JC et al. Management of hemochromatosis. Ann Intern Med 1998; 129: 932.CrossRefGoogle Scholar
  65. 65.
    Niederau C et al. Survival and causes of death in cirrhotic and in noncirrhotic patients with primary hemochromatosis. N Engl J Med 1985; 313: 1256.CrossRefGoogle Scholar
  66. 66.
    Niederau C et al. Long-term survival in patients with hereditary hemochromatosis. Gastroenterology 1996; 110: 1107.CrossRefGoogle Scholar
  67. 67.
    Olivieri, NF. The beta-thalassemias. N Engl J Med 1999; 341: 99.CrossRefGoogle Scholar
  68. 68.
    Bunn HF, Forget BG. Hemoglobin: Molecular, genetic and clinical asp ects. WB Saunders, Philadelphia 1986.Google Scholar
  69. 69.
    Adams JG III, Coleman MB. Structural hemoglobin variants that produce the phenotype of thalassemia. Semin Hematol 1990; 27: 229.Google Scholar
  70. 70.
    Lucarelli G et al. Bone marrow transplantation in adult thalassemic patient. Blood 1999; 93: 1164.Google Scholar
  71. 71.
    Giardina PJ et al. Mortality and morbidity in thalassemia with conventional treatment. Bone Marrow Transplant 1997; 19: 11.Google Scholar
  72. 72.
    Locatelli F, Stefano PD. New insights into hematopoietic stem cell transplantation for patients with hemoglobinopathies. Br J Hematol 2004; 125: 3.CrossRefGoogle Scholar
  73. 73.
    Bunn, HF. Pathogenesis and treatment of sickle cell disease. N Engl J Med 1997; 337: 762.CrossRefGoogle Scholar
  74. 74.
    Shafer FE et al. Newborn screening for sickle cell disease: 4 years of experience from California’s newborn screening program. J Pediatr Hematol Oncol 1996; 18 (1): 36–41.CrossRefGoogle Scholar
  75. 75.
    John AB, Ramlal A, Jackson H, Maude GH. Prevention of pneumococcal infection in children with homozygous sickle cell disease. Br Med J (Clin Red Es) 1984; 288: 1567.CrossRefGoogle Scholar
  76. 76.
    Falletta JM et al. Discontinuing penicillin prophylaxis in children with sickle cell anemia. Prophylactic Penicillin Study II. J Pediatr 1995; 127: 685.CrossRefGoogle Scholar
  77. 77.
    Wong WY, Overturf GD, Powars DR. Infection caused by Streptococcus pneumoniae in children with sickle cell disease: epidemiology, immunologic mechanisms, prophylaxis, and vaccination. Clin Infect Dis 1992; 14: 1124.CrossRefGoogle Scholar
  78. 78.
    Marcinak JF et al. Immunogenicity of Hemophilus influenzye type b polysaccharide- diphtheria toxoid conjugate vaccine in 3- to 17-month-old-infants with sickle cell diseases. J Pediatr 1991; 118: 69.CrossRefGoogle Scholar
  79. 79.
    Platt OS et al. Pain in sickle cell disease: Rates and risk factors; N Engl J Med 1991; 325: 11.CrossRefGoogle Scholar
  80. 80.
    Rees DC et al. Guidelines for the management of the acute painful crisis in sickle cell disease. Br J Hematol 2003; 120: 744.CrossRefGoogle Scholar
  81. 81.
    Pearson HA, Cobb WT. Folic acid studies in sickle-cell anemia. J Lab Clin Med 1964; 64: 913.Google Scholar
  82. 82.
    Platt OS et al. Mortality in sickle cell disease, Life expectancy and risk factors for early death. N Engl J Med 1994; 330(23): 1639.CrossRefGoogle Scholar
  83. 83.
    Kark JA et al. Sickle cell trait as a risk factor for sudden death in physical training, N Engl J Med 1987; 317: 781.CrossRefGoogle Scholar
  84. 84.
    Diallo D et al. Hemoglobinopathies C and S in the Dogons. Nouv Rev Fr Hematol 1994; 35(6): 551.Google Scholar
  85. 85.
    Tanphaichitr VS et al. Prevalence of hemoglobin E, alpha thalassemia and glucose-6-phosphate dehydrogenase deficiency in 1,000 cord bloods studied in Bangkok. Southeast Asian J Med Public Health 1995; 26 (supplì): 271.Google Scholar
  86. 86.
    Rogers ZR, Buchanan GR. Bacteremia in children with hemoglobin C disease and sickle beta 4- thalassemia: is prophylactic penicillin necessary? J Pediatr 1995; 127(3): 348.CrossRefGoogle Scholar
  87. 87.
    Xu W, Warner CA, Desnick RJ. Congenital erythropoietic porphyria: identification and expression of 10 mutations in the uroporphyrinogen III synthase gene. J Clin Invest 1995; 95(2): 905.CrossRefGoogle Scholar
  88. 88.
    Moreau-Gaudry F et al. Metabolic correction of congenital erythropoietic porphria by retrovirus-mediated gene transfer into Epstein-Barr virus-transformed B-cell-lines. Blood 1995; 85: 1449.Google Scholar
  89. 89.
    Whatley SD, Roberts AG, Elder GH. De-Novo mutation and sporadic presentation of acute intermittent porphyria. Lancet 1995; 346: 1007.CrossRefGoogle Scholar
  90. 90.
    Meissner PN et al. A R59W mutation in human protoporphirinogen oxidase results in decreased enzyme activity and is prevalent in South Africans with variegate porphyria. Nat Genet 1996; 13(1): 95.CrossRefGoogle Scholar
  91. 91.
    Hift RJ et al. Homozygous variegate porphyris: an evolving clinical syndrome. Postgrad Med J 1993; 69(816): 781.CrossRefGoogle Scholar
  92. 92.
    Schoenfeld N et al. Relation between uroporphyrin excretion, acute attacks of hereditary coproporphyria and successful treatment with hem arginate. Clin Sci (Colch) 1995; 88(3): 365.CrossRefGoogle Scholar
  93. 93.
    Lamoril J et al. A mulecular defect in coproporphyrinogen oxidase gene causing harderoporphyria, a variant form of hereditary coproporphyria. Hum Mol Genet 1995; 4(2): 275.CrossRefGoogle Scholar
  94. 94.
    Siersema PD et al. The difference in liver pathology between sporadic and familial forms of porphyria cutanea tarda: the role of iron. J Hepatol 1995; 23(3): 259.CrossRefGoogle Scholar
  95. 95.
    Shoenfeld Y et al. Benign familial leukopenia and neutropenia in different ethnic groups. Eur J Hematol 1988; 41: 273.CrossRefGoogle Scholar
  96. 96.
    Manroe BL et al. The neonatal blood count in health and disease. I. Reference values for neutrophilic cells. J Pediatr 1979; 95: 89.CrossRefGoogle Scholar
  97. 97.
    Elting LS et al. Outcomes of bacteremia inpatients with cancer and neutropenia: Observations from two decades of epidemiological and clinical trials. Clin Infect Dis 1997; 25: 247.CrossRefGoogle Scholar
  98. 98.
    Delabry LO et al. White blood cell count as a predictor of mortality: results over 18 years from the normative aging study. J Clin Epidemiol 1990; 43(2): 153.CrossRefGoogle Scholar
  99. 99.
    Hollen CW et al. Elevated serum interleukin-6 levels in patients with reactive thrombocytosis. Br J Hematol 1991; 79: 286.CrossRefGoogle Scholar
  100. 100.
    Buss DH et al. Occurrence, etiology, and clinical significance of extreme thrombocytosis: A study of 280 cases. Am J Med 1994; 96: 247.CrossRefGoogle Scholar
  101. 101.
    Schafer AI. Thrombocytosis. N Engl J Med 2004; 350: 1211.CrossRefGoogle Scholar
  102. 102.
    Tefferi A. The Philadelphia chromosome negative chronic myeloproliferative disorders: a practical overview. Mayo Clin Proc 1998; 73: 1177.CrossRefGoogle Scholar
  103. 103.
    Cines DB, Blanchette VS. Immune thrombocytopenic purpura. N Engl J Med 2002; 346: 995.CrossRefGoogle Scholar
  104. 104.
    Olsson B et al. T-cell-mediated cytotoxicity toward platelets in chronic idiopathic thrombocytopenic purpura. Nat Med 2003; 9: 1123.CrossRefGoogle Scholar
  105. 105.
    Cortelazzo S et al. High risk of severe bleeding in aged patients with chronic idiopathic thrombocytopenic purpura. Blood 1991; 77: 31.Google Scholar
  106. 106.
    Cines DC, Blanchette VS. Immune thrombocytopenic purpura. NEJM 2002; 346(13): 995.CrossRefGoogle Scholar
  107. 107.
    Remuzzi G. HUS and TTP: Variable expression of a single entity. Kidney Int 1987; 32: 292.CrossRefGoogle Scholar
  108. 108.
    Mori Y et al. Predicting response to plasma exchange in patients with thrombotic thrombocytopenic purpura with measurement of vWF-cleaving protease activity. Transfusion 2002; 42: 572.CrossRefGoogle Scholar
  109. 109.
    Mauser Bunschoten EP et al. Bleeding symptoms in carriers of hemophilia A and B. Thromb Hemost 1988; 59: 349.Google Scholar
  110. 110.
    White GC II et al. Definitions in hemophilia. Recommendation of the scientific subcommittee on factor VIII and factor IX of the scientific and standardization committee of the International Society on Thrombosis and Hemostasis. Factor VII and Factor IX Subcommittee. Thromb Hemost 2001; 85: 560.Google Scholar
  111. 111.
    Hemophilia today. Canadian Hemophilia Society 1996; 31: 3.Google Scholar
  112. 112.
    Hemophilia today. Canadian Hemophilia Society 1996; 31: 9.Google Scholar
  113. 113.
    Lu DR et al. Stage 1 clinical trials of gene therapy for hemophilia B. Sci China B 1993; 36: 1342.Google Scholar
  114. 114.
    Rosendaal FR et al. Mortality and causes of death in Dutch hemophiliacs, 1973–1986. Br J Hematol 1989; 71: 71.CrossRefGoogle Scholar
  115. 115.
    Chorba TL et al. Changes in longevity and causes of death among persons with hemophilia A. Am J Hematol 1994; 45: 112.CrossRefGoogle Scholar
  116. 116.
    Koster T et al. Venous thrombosis due to poor anticoagulant response to activated protein C: Leiden Thrombophilia Study. Lancet 1993; 342: 1503.CrossRefGoogle Scholar
  117. 117.
    Van der Bom JG et al. Reduced response to activated protein C is associated with increased risk for cerebrovascular disease. Amm Coll Phys 1996; 125: 265.Google Scholar
  118. 118.
    Blanco A et al. Deep vein thrombosis in a 13 year old boy with hereditary protein S deficiency and a review of the pediatric literature. Am J Hematol 1994; 45: 330.CrossRefGoogle Scholar
  119. 119.
    SEER Cancer Statistic Review, 1973–1999. National Cancer Institute, Bethesda, MD, 2000; 467.Google Scholar
  120. 120.
    Jemal A et al. Cancer statistics, 2003. CA Cancer J Clin 2003; 53: 5.CrossRefGoogle Scholar
  121. 121.
    Wheeler K et al. Treatment related deaths during induction and in first remission in acute lymphoblastic leukemia. Arch Dis Child 1996; 74: 101.CrossRefGoogle Scholar
  122. 122.
    Laport GF, Larson RA. Treatment of adult lymphoblastic leukemia. Semin Oncol 1997; 24: 70.Google Scholar
  123. 123.
    Allan NC, Richards SM, Shepherd PC. UK Medical Research Council randomised, multicenter trial of interferon-alpha nl for chronic myeloid leukemia: improved survival irrespective of cytogenetic response. Lancet 1995; 345: 1392.CrossRefGoogle Scholar
  124. 124.
    Devine SM, Larson RA. Acute leukemia in adults: recent developments in diagnosis and treatment. CA Cancer J Clin 1994; 44: 326.CrossRefGoogle Scholar
  125. 125.
    Hamblin TJ. Disappointments in treating acute leukemia in the elderly. N Engl J Med 1995; 322: 1712.CrossRefGoogle Scholar
  126. 126.
    Edenfield WJ, Gore SD. Stage-specific application of allogeneic and autologous marrow transplantation in the management of acute myeloid leukemia. Semin Oncol 1999; 26: 21.Google Scholar
  127. 127.
    Greinix HT et al. Factors affecting long-term outcome after allogeneic hematopoietic stem cell transplantation for acute myelogenous leukemia: a retrospective study of 172 adult patients reported to the Austrian Stem Cell Transplantation Registry. Br J Hematol 2002; 117: 914.CrossRefGoogle Scholar
  128. 128.
    Biggs JC et al. Treatment of chronic myeloid leukemia with allogeneic bone marrow transplantation after preparation with BuCy2. Blood 1992; 80: 1352.Google Scholar
  129. 129.
    Watson KV, Key N. Vascular complications of essential thrombocythemia: A link to cardiovascular risk factors. Br J Hematol 1993; 83: 198.CrossRefGoogle Scholar
  130. 130.
    Murphy S et al. Experience of the Polycthemia Vera Study Group with essential thrombocythemia: A final report on diagnostic criteria, survival, and leukemic transition by treatment. Semin Hematol 1997; 34: 29.Google Scholar
  131. 131.
    Rozman C et al. Life expectancy of patients with chronic nonleukemic myeloproliferative disorders. Cancer 1991; 67: 2658.CrossRefGoogle Scholar
  132. 132.
    Tefferi A, Murphy S. Current opinion in essential thrombocythemia: pathogenesis, diagnosis, and management. Blood Rev 2001; 15: 121.CrossRefGoogle Scholar
  133. 133.
    Berk PD et al. Therapeutic recommendations in polycythemia vera based on Polycythemia Vera Study Group protocols. Semin Hematol 1986; 23: 132.Google Scholar
  134. 134.
    Polycythemia vera: the natural history of 1213 patients followed for 20 years. Gruppo Italiano Studio Policitemia. Ann Intern Med 1995; 123: 656.CrossRefGoogle Scholar
  135. 135.
    Rozman C et al. Life expectancy of patients with chronic nonleukemic myeloproliferative disorders. Cancer 1991; 67: 2658.CrossRefGoogle Scholar
  136. 136.
    Ballarino P, Castello G, Lerza R. Interferon alpha in the treatment of myeloproliferative syndromes. Recenti Prog Med 1994; 85: 546.Google Scholar
  137. 137.
    Cancer Statistics Review 1973–1987. National Cancer Institute. Division of Cancer Prevention and Control Surveillance Program. USA Dept of Health and Human Services, 1989; IV-9, V-33.Google Scholar
  138. 138.
    Attal M et al. A prospective randomized trial of autologous bone marrow transplantation and chemotherapy in multiple myeloma. N Engl J Med 1996; 335: 91–7.CrossRefGoogle Scholar

Copyright information

© Palgrave Macmillan, a division of Macmillan Publishers Limited 2006

Authors and Affiliations

  • Ursula B. Wandl

There are no affiliations available

Personalised recommendations