Skip to main content

Abstract

In 2001, simultaneous publications by the commercial and academic arms of the international effort to determine the sequence of the human genome changed our understanding of human genetics for ever.1,2 Previous estimates indicated that human development and function relied on the products of about 100,000 genes located in a string of 3 billion nucleotides. The Human Genome Project (HGP) showed there were only 30– 35,000 individual genes. The long-held belief that one gene coded for one protein was also proven incorrect. Some genes produced parts of more than one protein. Through a process called alternative splicing,3 over 100,000 proteins are produced from this smaller number of genes. While studies of individual genes had found many with hundreds of mutations, it was now clear that the genome contained many millions of single nucleotide polymorphisms (SNPs), many of which could lead to disease. Furthermore, it was becoming apparent that most disease resulted from the interaction of several mutations, both inherited and acquired.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 279.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Lander ES et al. Initial sequencing and analysis of the human genome. Nature 2001; 409: 860–921.

    Article  ADS  CAS  PubMed  Google Scholar 

  2. Venter JC et al. The sequence of the human genome. Science 2001; 291: 1304–51.

    Article  ADS  CAS  PubMed  Google Scholar 

  3. Gravely BR. Alternative splicing: increased diversity in the proteomic world. Trends Genet 2001; 17: 100–7.

    Article  Google Scholar 

  4. Guttmacher AE, Collins FS. Genomic medicine — a primer. N Engl J Med 2002; 347: 1512–20.

    Article  Google Scholar 

  5. Cohen J. The genomics gamble. Science 1997; 275: 767–72.

    Article  CAS  PubMed  Google Scholar 

  6. Rothstein MA (ed). Pharmacogenomics: Social, Ethical and Clinical Dimensions. Hoboken: John Wiley and Sons, 2003.

    Google Scholar 

  7. Rothstein MA (ed). Genetics and Life Insurance: Medical Underwriting and Social Policy. Boston: MIT Press, 2004.

    Google Scholar 

  8. Billings PR et al. Discrimination as a consequence of genetic screening. Am J Hum Genet 1992; 50: 476–82.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Kaback MM. Heterozygote screening and prenatal diagnosis in Tay-Sachs disease: a worldwide update. In: Callahan J, Lowden JA (eds). Lysosomes and Lysosomal Storage Diseases. New York: Raven, 1981; 331.

    Google Scholar 

  10. Beutler E, Grabowski GA. Gaucher disease. In: Scriver CR, Beaudet AL, Sly WS, Valle D (eds). The Metabolic and Molecular Bases of Inherited Disease. New York: McGraw-Hill, 1995; 2641–70.

    Google Scholar 

  11. Cao A et al. Thalassemias in Sardinia: molecular pathology, phenotype-genotype correlation and prevention. Am J Pediatr Hematol Oncol 1991; 13: 179–88.

    Article  CAS  PubMed  Google Scholar 

  12. Scriver CR, Clow CL. Phenylketonuria: epitome of human biochemical genetics. N Engl J Med 1980; 303: 1336–42, 1394–400.

    Article  CAS  PubMed  Google Scholar 

  13. Waisbren SE, Read CY, Ampola M et al. Newborn screening compared to clinical identification of biochemical genetic disorders. J Inherit Metab Dis 2002; 25: 599–600.

    Article  CAS  PubMed  Google Scholar 

  14. Wachbroit R. Genetic determinism, genetic reductionism, and genetic essentialism. In: Murray TH, Mehlman MJ (eds). Encyclopedia of Ethical, Legal, and Policy Issues in Biotechnology, Vol. 1. New York: John Wiley & Sons, Inc. 2000.

    Google Scholar 

  15. Meyer RB. The insurance perspective. In: Rothstein MA (ed). Genetics and Life Insurance: Medical Underwriting and Social Policy. Boston: MIT Press. 2004; 27–48.

    Google Scholar 

  16. Task Force on Genetic Testing of the Ethical, Legal and Social Implications Working Group of the NIH/DOE Human Genome Project. Interim Report 1996 N A Holtzman, M Watson (chairs).

    Google Scholar 

  17. State of Maryland House Bill (1997) Confidentiality and genetic disclosure. HB 776.

    Google Scholar 

  18. Chambers D. On defining the genetic test. J Insr Med 1996; 27: 198–203.

    CAS  Google Scholar 

  19. Rimoin DL, Connor JM, Pyeritz RE (eds). Emory and Rimoin’s Principles and Practice of Medical Genetics, 3rd edn. Secaucus: Churchill Livingstone, 1996.

    Google Scholar 

  20. Osario A et al. Loss of heterozygosity analysis at the BRCA loci in tumor samples from patients with familial breast cancer. Int J Cancer 2002; 99: 305–9.

    Article  Google Scholar 

  21. Wallace DC. Mitochondrial diseases in man and mouse. Science 1999; 283: 1482–488.

    Article  ADS  CAS  PubMed  Google Scholar 

  22. Lowden JA. Serum beta-hexosaminidases in pregnancy. Clin Chim Acta. 1979; 93: 409–17.

    Article  CAS  PubMed  Google Scholar 

  23. van de Vijver MJ et al. A gene-expression signature as a predictor of survival in breast cancer. N Engl J Med 2002; 347: 1999–2009.

    Article  PubMed  Google Scholar 

  24. Rosenblatt KP et al. Serum proteomics in cancer diagnosis and management. Annu Rev Med 2004; 55: 97–112.

    Article  CAS  PubMed  Google Scholar 

  25. Beaudet AL. Carrier screening for cystic fibrosis. Am J Hum Genet 1990; 47: 603–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. St George-Hyslop PH et al. Alzheimer’s disease and possible gene interaction. Science 1994; 263: 537.

    Article  Google Scholar 

  27. Knoppers BM, Goddard B, Joly Y. In: Rothstein MA (ed). Genetics and Life Insurance: Medical Underwriting and Social Policy. MIT Press. Boston 2004; 173–92.

    Google Scholar 

  28. Chuffart A. Genetic testing in Europe. J Insr Med 1996; 28: 125–35.

    CAS  Google Scholar 

  29. Wooster R, Weber BL. Breast and ovarian cancer. New Engl J Med 2003; 348: 2339–47.

    Article  CAS  PubMed  Google Scholar 

  30. Whittemore AS, Gong G, Itnyre J. Prevalence and contribution of BRCA1 mutations in breast cancer and ovarian cancer: Results from three USA population-based case-control studies of ovarian cancer. Am J Hum Genet 1997; 60: 496–504.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Swift M et al. Incidence of cancer in 161 families affected by ataxia-telangiectasia. N Engl J Med 1991; 325: 1831–6.

    Article  CAS  PubMed  Google Scholar 

  32. Lynch HT, de la Chapelle A Hereditary colorectal cancer. N Engl J Med 2003; 348: 919–32.

    Article  CAS  PubMed  Google Scholar 

  33. Kauff ND et al. Risk-reducing salpingo-oophorectomy in women with a BRCA1 or BRCA2 mutation. N Engl J Med 2002; 346: 1609–15.

    Article  PubMed  Google Scholar 

  34. Lowden JA. Underwriting dominantly inherited disease. J Insur Med 1996; 27: 228–34.

    CAS  Google Scholar 

  35. Holtzman NA. Proceed with Caution: predicting genetic risks in the recombinant DNA era. Baltimore: Johns Hopkins University Press, 1989.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Copyright information

© 2006 Palgrave Macmillan, a division of Macmillan Publishers Limited

About this chapter

Cite this chapter

Lowden, J.A. (2006). Underwriting Genetic Diseases. In: Brackenridge, R.D.C., Croxson, R.S., MacKenzie, R. (eds) Brackenridge’s Medical Selection of Life Risks. Palgrave Macmillan, London. https://doi.org/10.1007/978-1-349-56632-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-349-56632-7_6

  • Publisher Name: Palgrave Macmillan, London

  • Print ISBN: 978-1-349-56634-1

  • Online ISBN: 978-1-349-56632-7

  • eBook Packages: Palgrave History CollectionHistory (R0)

Publish with us

Policies and ethics