Plasticine and Valves: Industry, Instrumentation and the Emergence of Nuclear Physics

  • Jeff Hughes
Part of the Science, Technology and Medicine in Modern History book series (STMMH)


It is scientific lore that experimental physics before the Second World War relied on ’sealing-wax and string.’ Synonymous with small-scale, benchtop science, ’sealing-wax and string’ feature prominently in reminiscences about prewar physics, where they have somehow come to epitomise a golden age of innocence before big science and the bomb, the nostalgic era of heroic individuals doing science with whatever meagre resources came to hand. The phrase has become a shorthand for a style, a way of doing physics. It has also come to stand for a certain penuriousness that is taken to be characteristic of much of prewar physics. In that it connotes an altogether more relaxed world, closer to the gentlemanly milieu of nineteenth-century science than to the high-pressure, high-finance ethos of that of the late twentieth, ’sealing-wax and string’ has become one of the central myths of the history of early-twentieth-century physics.1


Royal Society Disintegration Experiment Cloud Chamber Philosophical Magazine Geiger Counter 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    So much so that one physicist, writing in the 1970s about developments in the 1930s, goes out of his way to point out that ‘My book on Electrical Counting even includes a mention of the famous “sealing wax.” ’, See W. B. Lewis, ‘Early Detectors and Counters’, Nuclear Instruments and Methods, Vol. 162 (1979) pp. 9–14CrossRefGoogle Scholar
  2. W. B. Lewis, Electrical Counting (Cambridge: Cambridge University Press 1942) p. 7.Google Scholar
  3. D. J. de Solla Price, ‘Of Sealing Wax and String’, Natural History, vol. 93 (1984) pp. 49–57Google Scholar
  4. 2.
    J. A. Crowther, ‘Research Work in the Cavendish Laboratory in 1900–1918’, Supplement to Nature, vol. 118 (1926) pp. 58–60CrossRefGoogle Scholar
  5. 3.
    In J. Huxley, Scientific Research and Social Needs (London: Watts & Co. 1934) p. 209.Google Scholar
  6. 4.
    On the Cavendish Laboratory, see J. G. Crowther, The Cavendish Laboratory 1874–1974 (London: Macmillan 1974).CrossRefGoogle Scholar
  7. 5.
    For a splendid account of the importance of ‘mundane’ materials in physics, see R. G. Stansfield, ‘Could We Repeat It?’, in J. Roche (ed.), Physicists Look Back. Studies in the History of Physics (Bristol: Adam Hilger 1990) pp. 88–107.Google Scholar
  8. 6.
    S. Schaffer, ‘Late Victorian Metrology and its Instrumentation: A Manufactory of Ohms’, in R. Bud and S. Cozzens (eds), Invisible Connections. Instruments, Institutions and Science (Bellingham, Wash.: SPIE Optical Engineering Press 1992) pp. 23–56Google Scholar
  9. ‘Accurate Measurement is an English Science’, in N. Wise (ed.), The Values of Precision (Princeton: Princeton University Press 1995) pp. 135–72.Google Scholar
  10. 7.
    C. A. Niblett, ‘Images of Progress: Three Episodes in the Development of Research Policy in the UK Electrical Engineering Industry’, unpublished PhD. dissertation, University of Manchester, (1980) pp. 85–153; T. E. Allibone, ‘Metropolitan-Vickers Electrical Company and the Cavendish Laboratory’, in J. Hendry (ed.), Cambridge Physics in the Thirties (Bristol: Adam Hilger 1984) pp. 150–73Google Scholar
  11. G. Hartcup and T. E. Allibone, Cockcroft and the Atom (Bristol: Adam Hilger 1984) pp. 26–88Google Scholar
  12. T. E. Allibone, ‘Reminiscences of Sheffield and Cambridge’, in R. Williamson (ed.), The Making of Physicists (Bristol: Adam Hilger 1987) pp. 21–31.Google Scholar
  13. 8.
    S. Lindqvist, ‘A Wagnerian Theme in the History of Science: Scientific Glassblowing and the Role of Instrumentation’, in Tore Frängsmyr (ed.), Solomon’s House Revisited. The Organization and Institutionalisation of Science (Canton, Mass.: Science History Publications USA 1990) pp. 160–183Google Scholar
  14. 10.
    E. Bullard, ‘Rutherford’s Cavendish’, Nature, vol. 250 (1974) pp. 770–72CrossRefGoogle Scholar
  15. 11.
    Stansfield, ‘Could We Repeat It?’, p. 102. For a contemporary account of the importance of sealants, see G. W. C. Kaye, High Vacua (London: Longman’s Green & Co. 1927) p. 69.Google Scholar
  16. 12.
    P. M. S. Blackett, ‘The Craft of Experimental Physics’, in H. Wright (ed.), Cambridge University Studies (London: Ivor Nicholson & Watson 1933), p. 67–96Google Scholar
  17. 14.
    J. G. Crowther, The Social Relations of Science (London: Macmillan 1941) pp. 485–7Google Scholar
  18. 16.
    T. Shimizu, ‘A Reciprocating Expansion Apparatus for Detecting Ionizing Rays’, Proceedings of the Royal Society, vol. A99 (1921) pp. 425–31CrossRefGoogle Scholar
  19. S. L. Barron, C.T.R. Wilson and the Cloud Chamber (London: Cambridge Instrument Co. 1952)Google Scholar
  20. M. J. G. Cattermole and A. F. Wolfe, Horace Darwin’s Shop. A History of the Cambridge Scientific Instrument Company, 1878–1968 (Bristol and Boston Mass: Adam Hilger 1987) pp. 249–57.Google Scholar
  21. P. M. S. Blackett, ‘The Early Days of the Cavendish’, Rivista del Nuovo Cimento, vol. 1 (1969) pp. xxxii–xlGoogle Scholar
  22. B. Lovell, ‘Patrick Maynard Stuart Blackett, Baron Blackett of Chelsea, 1897–1974’, Biographical Memoirs of the Fellows of the Royal Society, vol. 21 (1975) pp. 1–115.CrossRefGoogle Scholar
  23. 17.
    C. E. B. Roberts, ‘The Almighty Atom. A Layman’s Odyssey around the Scientific Centres of Europe’, World Today, vol. 45 (1925) pp. 192–9Google Scholar
  24. 18.
    E. Rutherford, ‘Nuclear Constitution of Atoms (Bakerian Lecture)’, Proceedings of the Royal Society, vol. A97 (1920) pp. 374–400.CrossRefGoogle Scholar
  25. 20.
    E. Rutherford and H. Geiger, ‘An Electrical Method of Counting the Number of α-Particles from Radio-active Substances’, Proceedings of the Royal Society, vol. A81 (1908) pp. 141–61CrossRefGoogle Scholar
  26. 21.
    W. Makower and H. Geiger, Practical Measurements in Radioactivity (London: Longman’s Green & Co. 1912) p. 49.Google Scholar
  27. 24.
    Ibid. On scintillation-counting experiments, see also C. G. Darwin, ‘The Discovery of Atomic Number’, New Zealand Science Review, vol. 14 (1956) pp. 102–8Google Scholar
  28. T. H. Osgood and H. S. Hirst, ‘Rutherford and his Alpha Particles’, American Journal of Physics’ vol. 32 (1964) pp. 681–6.CrossRefGoogle Scholar
  29. 25.
    R. H. Stuewer, ‘Artificial Disintegration and the Cambridge—Vienna Controversy’, in P. Achinstein and O. Hannaway (eds), Observation, Experiment and Hypothesis in Modern Physical Science (Cambridge, Mass., and London: MIT Press 1985) pp. 239–307Google Scholar
  30. 27.
    T. J. Trenn, ‘Rutherford’s Electrical Method: Its Significance for Radioactivity and an Expression of His Metaphysics’, Proceedings of the XIII International Congress in History of Science. Section 6 (Moscow: Editions ‘Nauka’ 1974) pp. 112–18.Google Scholar
  31. 28.
    H. Geiger, ‘Über die Wirkungsweise des Spitzenzählers’, Zeitschrift für Physik, vol. 27 (1924) pp. 7–11.CrossRefGoogle Scholar
  32. 29.
    H. Geiger and O. Klemperer, ‘Beitrag zur Wirkungsweise des Spitzenzählers’, Zeitschrift für Physik, vol. 49 (1928) pp. 753–60CrossRefGoogle Scholar
  33. H. Geiger and W. Müller, ‘Elektronzählrohr zur Messung schwäster Aktivitäten’, Naturwissenschaften, vol. 16 (1928) pp. 617–18CrossRefGoogle Scholar
  34. A. J. van den Akker, ‘On the Geiger-Müller Tube as a Quantitative Ion-Counter’, Review of Scientific Instruments, vol. 1 (1930) pp. 672–83.CrossRefGoogle Scholar
  35. F. G. Rheingans, Hans Geiger und die elektrischen Zählmethoden, 1908–1928 (Berlin: D. A. V. T. D. Verlegsgesell Scheft 1988)Google Scholar
  36. T. J. Trenn, ‘The Geiger—Müller Counter of 1928’, Annals of Science, vol. 43 (1986) pp. 111–35.CrossRefGoogle Scholar
  37. 30.
    On valve research and development in the 1920s, see for example W. R. Maclaurin and R. J. Harman, Invention and Innovation in the Radio Industry, (New York: Macmillan 1949)Google Scholar
  38. W. M. Dalton, The Story of Radio (Bristol: Adam Hilger 1975, 3 vols) vol. 2, pp. 115–19Google Scholar
  39. J. W. Stokes, 70 Years of Radio Tubes and Valves (New York: Vestal Press 1982)Google Scholar
  40. R. Clayton and J. Algar, The GEC Research Laboratories, 1919–1984 (London: Peter Peregrinns 1989) pp. 115–22CrossRefGoogle Scholar
  41. K. Geddes and G. Bussey, Setmakers. A History of the Radio and Television Industry (London: B. R. E. E. M. A. 1991)Google Scholar
  42. G. F. J. Tyne, Saga of the Vacuum Tube (Indianapolis: Howard W. Sams Co. 1977)Google Scholar
  43. 31.
    D. L. Salomons, Experiments with Vacuum Tubes (London: Whittaker & Co. 1903)Google Scholar
  44. P. N. Hasluck (ed.) Glass Working by Heat and by Abrasion (London: Cassell & Co. 1912).Google Scholar
  45. 33.
    C. E. Ramsbottom, ‘The Era of the Home Wireless Constructor’, in 100 Years of Radio, IEE Conference Publication 411 (London: 1995) pp. 114–18, on p. 115. See also P. R. Morris, ‘A Review of the Development of the British Thermionic Valve Industry’, Transactions of the Newcomen Society, vol. 65 (1994) pp. 57–72.CrossRefGoogle Scholar
  46. 34.
    R. V. Jones, Most Secret War. British Scientific Intelligence 1939–1945 (London: Coronet Books 1978) pp. 30–1.Google Scholar
  47. F. L. Allen, Only Yesterday. An Informal History of the Nine teen-Twenties (Harmondsworth: Penguin 1939 [1931]) p. 221Google Scholar
  48. R. Graves and A. Hodge, The Long Weekend. A Social History of Great Britain (London: Cardinal 1991 [1940]) p. 89Google Scholar
  49. G. Bussey, Wireless: The Crucial Decade (London: Peregrinns 1990)CrossRefGoogle Scholar
  50. Also see M. Pegg, Broadcasting and Society, 1918–1939 (London: Croom Helm 1983)Google Scholar
  51. P. Scannell and D. Cardiff, A Social History of British Broadcasting, vol. 1 pp. 1922–1939. Serving the Nation (Oxford: Blackwell 1991).Google Scholar
  52. 36.
    A. Plummer, New British Industries in the Twentieth Century (London: Pitman 1937) p. 45.Google Scholar
  53. 38.
    ‘Wireless Feminnities,’ Wireless Magazine, February 1925, quoted in S. Briggs, Those Radio Times (London: Weidenfeld & Nicolson 1981) pp. 29.Google Scholar
  54. 40.
    For some of the links between the cultures of physics and radio in the 1920s, see G. Beer, ‘“Wireless”: Popular Physics, Radio and Modernism’, in F. Spufford and J. Uglow (eds), Cultural Babbage: Technology, Time and Invention (London: Faber and Faber 1996) pp. 149–66.Google Scholar
  55. 41.
    On Appleton, see J. A. Ratcliffe, ‘Edward Victor Appleton, 1892–1965’, Biographical Memoirs of the Fellows of the Royal Society, vol. 12 (1966) pp. 1–21CrossRefGoogle Scholar
  56. R. W. Clark, Sir Edward Appleton (Oxford: Pergemon Press 1971).Google Scholar
  57. J. A. Ratcliffe (ed.),’ special Issue: Fifty Years of the lonosphere’, Journal of Atmospheric and Terrestrial Physics, vol. 36 (1974) pp. 2069–2319.Google Scholar
  58. 42.
    W. B. Lewis, ‘Wireless Soc. Presidental Address 1933’, Box 35, folder 6, W. B. Lewis papers, Queen’s College Archives, Kingston, Ontario (hereafter ‘Lewis papers’), emphasis in original. On Lewis, see B. Lovell and D. G. Hurst, ‘Wilfrid Bennett Lewis’, Biographical Memoirs of the Fellows of the Royal Society, vol. 34 (1988) pp. 453–509CrossRefGoogle Scholar
  59. 44.
    See, for example, W. B. Lewis, ‘Note on the Problem of Selectivity Without Reducing the Intensity of the Sidebands’, Wireless Engineer and Experimental Wireless, vol. 6 (1929) pp. 133–134Google Scholar
  60. 45.
    N. A. de Bruyne, ‘1923-30’, in Hendry (ed.), Cambridge Physics in the Thirties, pp. 81–9. On the Wembley laboratories, see J. W. Ryde, ‘Clifford Copland Paterson’, Obituary Notices of the Fellows of the Royal Society, vol. 6 (1949) pp. 479–501CrossRefGoogle Scholar
  61. M. H. F. Wilkins, ‘John Turton Randall’, Biographical Memoirs of the Fellows of the Royal Society, vol. 33 (1987) pp. 493–535.CrossRefGoogle Scholar
  62. 47.
    Hartcup and Allibone, Cockcroft and the Atom, esp. pp. 26–57. On the British Thomson-Houston Co., see H. A. Price-Hughes, BTH. Reminiscences of Sixty Years of Progress (Rugby: B. T. H. 1946)Google Scholar
  63. 48.
    A. W. Hull, ‘Hot-Cathode Thyratrons. Part I: Characteristics’, General Electric Review, vol. 32, (1929), pp. 213–23Google Scholar
  64. J. E. Brittain, ‘Power Electronics at General Electric: 1900–1941’, Advances in Electronics and Electron Physics, vol. 50 (1980) pp. 411–47CrossRefGoogle Scholar
  65. 51.
    E. C. Pollard, ‘Neutron Pioneer’, Physics World, vol. 4(10) (1991) pp. 31–3CrossRefGoogle Scholar
  66. 52.
    F. A. B. Ward, ‘C. E. Wynn-Williams’, Nature, vol. 283 (1980) pp. 117–18.Google Scholar
  67. C. E. Wynn-Williams, ‘A Piezo-Electric Oscillograph’, Philosophical Magazine, vol. 49 (1925) pp. 289–313CrossRefGoogle Scholar
  68. 53.
    C. E. Wynn-Williams, ‘A Valve Amplifier for Ionisation Currents’, Proceedings of the Cambridge Philosophical Society, vol. 23 (1927) pp. 811–28.CrossRefGoogle Scholar
  69. 56.
    H. Greinacher, ‘Über die Registierung von α-und H-Strahlen nach der neuen elektrischen Zählmethode’, Zeitschrift für Physik, vol. 44 (1927) pp. 319–325.CrossRefGoogle Scholar
  70. Also see Greinacher, ‘Über die akustiche Beobachtung und galvanometrische Registierung von Elementarstrahlen und Einzelionen’, Zeitschrift für Physik, vol. 23 (1924) pp. 361–78CrossRefGoogle Scholar
  71. 58.
    F. A. B. Ward, C. E. Wynn-Williams and H. M. Cave, ‘The Rate of Emission of Alpha Particles from Radium’, Proceedings of the Royal Society, vol. A125 (1929) pp. 713–30.CrossRefGoogle Scholar
  72. 61.
    H. J. J. Braddick and H. M. Cave, ‘The Rate of Emission of α-particles from Radium’, Proceedings of the Royal Society, vol. A121 (1928) pp. 367–80.CrossRefGoogle Scholar
  73. 64.
    E. Rutherford, F. A. B. Ward and C. E. Wynn-Williams, ‘A New Method of Analysis of Groups of Alpha-rays. (1) The Alpha Rays from Radium C, Thorium C and Actinium C’, Proceedings of the Royal Society, vol. A129 (1930) pp. 211–34CrossRefGoogle Scholar
  74. C. E. Wynn-Williams and F. A. B. Ward, ‘Valve Methods of Recording Single Alpha-Particles in the Presence of Powerful Ionizing Radiation’, Proceedings of the Royal Society, vol. A131 (1931) pp. 391–409CrossRefGoogle Scholar
  75. E. Rutherford, F. A. B. Ward and W. B. Lewis, ‘Analysis of the α-Particles Emitted From C and Actinium C’, Proceedings of the Royal Society, vol. A131 (1931) pp. 684–703CrossRefGoogle Scholar
  76. 65.
    J. Chadwick, J. E. R. Constable and E. C. Pollard, ‘Artificial Disintegration by a-Particles’, Proceedings of the Royal Society, vol. A130 (1931) pp. 463–489CrossRefGoogle Scholar
  77. E. C. Pollard, ‘Recollections of the Cavendish Laboratory,’ in E. C. Pollard and D. C. Huston, Physics: An Introduction, (New York: Oxford University Press 1969) pp. 151–62.Google Scholar
  78. 67.
    G. Ortner and G. Stetter, ‘Über den elektrischen Nachweis einzelner Korpuskularstrahlen’, Zeitschrift für Physik, vol. 54 (1929) pp. 449–76.CrossRefGoogle Scholar
  79. E. A. W. Schmidt and G. Stetter, ‘Die Anwendung des Rohrenelektrometers zur Untersuchung von Protonenstrahlen’, Akademie der Wissenschaften, Wien, Sitzungsberichte, vol. 138, 2a (1929) pp. 271–87.Google Scholar
  80. 72.
    W. B. Lewis,’ some Recollections and Reflections on Rutherford’, Notes and Records of the Royal Society, vol. 27 (1972) pp. 61–3CrossRefGoogle Scholar
  81. 74.
    E. Rutherford, F. A. B. Ward and W. B. Lewis, ‘Analysis of the Long-Range α-Particles from Radium C’, Proceedings of the Royal Society, vol. A131 (1931) pp. 684–703CrossRefGoogle Scholar
  82. E. Rutherford, C. E. Wynn-Williams and W. B. Lewis, ‘Analysis of the α-Particles Emitted from Thorium C and Actinium C,’ Proceedings of the Royal Society, vol. A133 (1931) pp. 351–66CrossRefGoogle Scholar
  83. W. B. Lewis and C. E. Wynn-Williams, ‘The Range of the α-Particles from the Radioactive Emanations and ‘A’ Products and from Polonium,’ Proceedings of the Royal Society, vol. A136 (1932) pp. 349–63CrossRefGoogle Scholar
  84. E. Rutherford, C. E. Wynn-Wiliiams, W. B. Lewis and B. V. Bowden, ‘Analysis of the α-rays by Annular Magnetic Field’, Proceedings of the Royal Society, vol. A139 (1933) pp. 617–37CrossRefGoogle Scholar
  85. E. Rutherford W. B. Lewis and B. V. Bowden ‘Analysis of the Long-Range α-Particles from Radium C’ by the Magnetic Focussing Method’, Proceedings of the Royal Society, vol. A142 (1933) pp. 347–61CrossRefGoogle Scholar
  86. 78.
    See, for example, the remarks of W. B. Lewis in ‘The Multi-Electrode Valve and its Application in Scientific Instruments’, Journal of Scientific Instruments, vol. 15 (1938) pp. 353–60CrossRefGoogle Scholar
  87. 79.
    Wynn-Wiliiams, ‘The Scale-of-Two Counter’, p. 144. Wynn-Williams was not the first to use thyratrons in experimental investigations at the Cavendish: see N. A. de Bruyne and H. C. Webster, ‘Note on the Use of a Thyratron with a Geiger Counter’, Proceedings of the Cambridge Philosophical Society, vol. 27 (1931) pp. 113–15CrossRefGoogle Scholar
  88. H. C. Webster, ‘The Capture of Electrons by α-Particles’, Proceedings of the Cambridge Philosophical Society, vol. 27 (1931) pp. 116–30CrossRefGoogle Scholar
  89. 82.
    C. E. Wynn-Williams, ‘The Use of Thyratrons for High-Speed Automatic Counting of Physical Phenomena’, Proceedings of the Royal Society, vol. A132 (1931) pp. 295–310CrossRefGoogle Scholar
  90. 83.
    Wynn-Williams, ‘A Thyratron “Scale of Two” Automatic Counter’, p. 323; ‘The Scale-of-Two Counter’, pp. 147–8. On the Blattnerphone, see A. Briggs, The History of Broadcasting in the United Kingdom, vol. II, The Golden Age of Wirèless, (London: Oxford University Press, 1965) 98–100.Google Scholar
  91. 86.
    E. N. da C. Andrade, ‘The Physics of the Atom,’ Reports on Progress in Physics, vol. 1 (1934) pp. 269–320CrossRefGoogle Scholar
  92. 87.
    C. E. Wynn-Williams, ‘Electrical Methods of Counting’, Reports on Progress in Physics, vol. 3 (1936) pp. 239–61CrossRefGoogle Scholar
  93. 88.
    J. Chadwick, ‘Possible Existence of a Neutron’, Nature, vol. 129 (1932) p. 312CrossRefGoogle Scholar
  94. J. Bromberg, ‘The Impact of the Neutron on Bohr and Heisenberg’, Historical Studies in the Physical Sciences, vol. 3 (1971) pp. 307–41CrossRefGoogle Scholar
  95. 89.
    On Gray, see W. B. Lewis, ‘Joseph Alexander Gray’, Biographical Memoirs of the Fellows of the Royal Society, vol. 13 (1967) pp. 89–106.CrossRefGoogle Scholar
  96. 90.
    B. W. Sargent, ‘Nuclear Physics in Canada in the 1930s’, in W. R. Shea (ed.), Otto Hahn and the Rise of Nuclear Physics (Dordrecht: D. Reidel 1983) pp. 221–40CrossRefGoogle Scholar
  97. 93.
    See, for example, W. J. Henderson to Gray, 11 March 1933, 14 November 1933, 11 November 1934, 13 March 1935; W. E. Bennett to Gray, 8 February 1935, Gray papers. The difficulties of replication at a distance and the importance of personal contact are emphasized in H. M. Collins, Changing Order. Replication and Induction in Scientific Practice (London: Sage 1985).Google Scholar
  98. 96.
    L. Leprince-Ringuet, Noces de Diamant avec L’Atome (Paris: Flammarion 1991) pp. 33–6Google Scholar
  99. Leprince-Ringuet, ‘Notice nécrologique sur le Duc Maurice de Broglie’, Comptes Rendus, vol. 251.1 (1960) pp. 297–303Google Scholar
  100. P. Lépine, ‘Notice sur la vie et les travaux de Maurice de Broglie’, Académie des Sciences, Notices et Discours, vol. 4 (1962) pp. 625–56.Google Scholar
  101. 97.
    L. Leprince-Ringuet, ‘Relation entre le parcours d’un proton rapide dans l’aire et l’ionisation qu’il produit. Application à l’étude de la désintégration artificielle des éléments’, Comptes Rendus, vol. 192 (1931) pp. 1543–5Google Scholar
  102. M. de Broglie and L. Leprince-Ringuet, ‘Récents Progrès de la désintégration artificielle des noyaux atomiques par bombardement de rayons α’, Journal de Physique et Le Radium, vol. 2 (1931) p. 975Google Scholar
  103. L. Leprince-Ringuet, ‘Dispositif permettant de détecter les rayonnements corpusculaires isolés’, Journal de Physique et Le Radium, vol. 2 (1931) pp. 985–95Google Scholar
  104. M. de Broglie and L. Leprince-Ringuet,’ sur la Désintégration artificielle de l’aluminium’, Comptes Rendus, vol. 193 (1931) pp. 132–3Google Scholar
  105. L. Leprince-Ringuet, Les Transmutations Artificielles (Paris: Hermann 1933).Google Scholar
  106. 98.
    B. Davis and A. H. Barnes, ‘Capture of Electrons by Swiftly Moving Alpha-Particles’, Physical Review, vol. 37 (1931) p. 1368CrossRefGoogle Scholar
  107. J. R. Dunning ‘Detection of Corpuscular Radiation by Vacuum Tube Methods’, Physical Review, vol. 43 (1933) pp. 387CrossRefGoogle Scholar
  108. J. R. Dunning and G. B. Pegram,’ Scattering and Absorption of Neutrons’, Physical Review, vol. 43 (1933) 497–98CrossRefGoogle Scholar
  109. H. L. Anderson, ‘John Ray Dunning’, Biographical Memoirs of the National Academy of Sciences, vol. 58 (1989) pp. 163–8.Google Scholar
  110. 99.
    J. L. Heilbron and R. W. Seidel, Lawrence and his Laboratory: A History of the Lawrence Berkeley Laboratory, vol. 1 (Berkeley: University of California Press 1989) pp. 24–5Google Scholar
  111. H. Childs, An American Genius: The Life of Ernest Orlando Lawrence (New York: E. P. Dutton & Co. 1968).Google Scholar
  112. 102.
    For the group’s own recognition of the importance of measurement techniques, see Carnegie Institution of Washington, Yearbook, vol. 31 (1931-2) p. 232; Tuve to F. K. Richtmeyer [Cornell], 16 June 1932; ‘Report for June 1932’, dated 2 July 1932, Box 4, Tuve papers. On the FP-54, see J. A. Fleming to L. E. Loveridge, 31 August 1931, Box 8, Tuve papers; A. E. Ruark to Tuve, 4 February 1932, Box 6, Tuve papers; [Tuve], ‘FP-54 control unit for use with amplifier’, 6 June 1932, Box 6, Tuve papers; Tuve, Memorandum Regarding FP-54 Pliotrons, dated 15 February 1932, Box 4, Tuve, papers; L. R. Hafstad, ‘Measurements of Small Currents Using Pliotron Tubes’, Physical Review, vol. 40 (1932) p. 1044Google Scholar
  113. L. R. Hafstad, ‘The Application of the FP-54 Pliotron to Atomic Disintegration-Studies’, Physical Review, vol. 44 (1933) pp. 201–13.CrossRefGoogle Scholar
  114. 105.
    L. F. Curtiss, ‘A Vacuum Tube Amplifier for Feeble Pulses’, National Bureau of Standards Journal of Research, vol. 9 (1932) pp. 115–20CrossRefGoogle Scholar
  115. 114.
    See J. Strong, Modern Physical Laboratory Practice (London: Blackie & Son 1938) p. 427.Google Scholar
  116. 116.
    S. Devons, ‘The Cavendish Laboratory Today’, Discovery, vol. 1 (1938) pp. 39–44Google Scholar
  117. 120.
    J. D. Bernal, The Social Function of Science (London: Routledge 1939).Google Scholar
  118. W. McGucken, Scientists, Society and State: The Social Relations of Science Movement in Great Britain, 1931–1947, (Columbus, Ohio: Ohio State University Press 1984).Google Scholar
  119. G. Werskey, The Visible College (London: Free Association Books 1978).Google Scholar
  120. 124.
    Quoted in R. and K. McLeod, ‘The Social Relations of Science and Technology 1914–1939’, in C. M. Cipolla (ed.), The Fontana Economic History of Europe. The Twentieth Century — 1, (Glasgow: Fontana Collins 1976) pp. 301–63Google Scholar
  121. 125.
    See M. L. Oliphant, Rutherford. Recollections of the Cambridge Days (Amsterdam, London and New York: Elsevier 1972) pp. 145–6.Google Scholar
  122. 126.
    See, for example, D. Hall et al., The Frustration of Science (London: George Allen & Unwin 1935)Google Scholar
  123. J. B. Orr et al., What Science Stands For (London: George Allen & Unwin 1937).Google Scholar

Copyright information

© Macmillan Press Ltd 1998

Authors and Affiliations

  • Jeff Hughes

There are no affiliations available

Personalised recommendations