Skip to main content

Intermediate Filaments and other Alpha-Helical Proteins

  • Chapter
Molecules of the Cytoskeleton

Abstract

The most truly fibrous components of cytoplasm, namely α-helical polypeptides that pair into a coiled-coil arrangement, are found in many situations. Being long rod-shaped molecules, they are ideal for contributing tensile strength to the cytoskeleton. Rod-shaped molecules can each make many more side-to-side bonds when assembled into filaments than do globular subunits like actin and tubulin.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Further reading

Some reviews

  1. Klymkowsky, M. W., Bachant, J. B. & Domingo, A. (1989). Functions of intermediate filaments. Cell Motil. & Cytoskel. 14, 309–331.

    Article  CAS  Google Scholar 

  2. Liem, R. K. H. (1990). Neuronal intermediate filaments. Curr. Opinion Cell Biol. 2, 86–90.

    Article  CAS  PubMed  Google Scholar 

  3. Stewart, M. (1990). Intermediate filaments: structure, assembly and molecular interactions. Curr. Opinion Cell Biol. 2, 91–100.

    Article  CAS  PubMed  Google Scholar 

  4. Osborn, M. & Weber, K. (1986). Intermediate filament proteins: a multigene family distinguishing major cell lineages. Trends Biochem. Sci. 11, 469–472.

    Article  CAS  Google Scholar 

  5. Geiger, B. (1987). Intermediate filaments: looking for a function. Nature 329, 392–393.

    Article  CAS  PubMed  Google Scholar 

  6. Cohen, C. & Parry, D. A. D. (1986). α-Helical coiled-coils—a widespread motif in proteins. Trends Biochem. Sci. 11, 245–248.

    Article  CAS  Google Scholar 

  7. Steinert, P. M. & Roop, D. R. (1988). Molecular and cellular biology of intermediate filaments. Annu. Rev. Biochem. 57, 593–626.

    Article  CAS  PubMed  Google Scholar 

  8. Steinert, P. M. & Parry, D. A. D. (1985). Intermediate filaments: conformity and diversity of expression and structure. Annul. Rev. Cell Biol. 1, 41–65.

    Article  CAS  Google Scholar 

  9. Traub, P. (1985). Intermediate Filaments: a review. Berlin: Springer.

    Book  Google Scholar 

  10. Steinert, P. M., Steven, A. C. & Roop, D. R. (1985). The molecular biology of intermediate filaments. Cell 42, 411–419.

    Article  CAS  PubMed  Google Scholar 

  11. Goldman, R., Goldman, A., Green, K., Jones, J., Lieska, N. & Yang, H. (1985). Intermediate filaments: possible functions as cytoskeletal connecting links between the nucleus and the cell surface. Ann. N.Y. Acad. Sci., USA 455, 1–17.

    Article  CAS  Google Scholar 

  12. Steinert, P. M., Jones, J. C. R. & Goldman, R. D. (1984). Intermediate filaments. J. Cell Biol. 99, 22s–27s.

    Article  Google Scholar 

  13. Osborn, M. & Weber, K. (1983). Tumor diagnosis by intermediate filament typing: a novel tool for surgical pathology. Lab. Invest. 48, 372–394.

    CAS  PubMed  Google Scholar 

  14. Lazarides, E. (1982). Intermediate filaments: a chemically heterogeneous developmentally-regulated class of proteins. Annu. Rev. Biochem. 51, 219–250.

    Article  CAS  PubMed  Google Scholar 

  15. Franke, W. W. (1987). Nuclear lamins and cytoplasmic intermediate filaments: a growing multigene family. Cell 48, 3–4.

    Article  CAS  PubMed  Google Scholar 

  16. Gerace, L. (1986). Nuclear lamina and organization of nuclear architecture. Trends Biochem. Sci. 11, 443–446.

    Article  CAS  Google Scholar 

Some original papers

  1. Aebi, U., Fowler, W. E., Rew, P. and Sun, T.-T. (1983). The fibrillar substructure of keratin filaments unraveled. J. Cell Biol. 97, 1131–1143.

    Article  CAS  PubMed  Google Scholar 

  2. Aebi, U., Cohn, J., Buhle, L. & Gerace, L. (1986). The nuclear lamina is a meshwork of intermediate-type filaments. Nature 323, 560–564.

    Article  CAS  PubMed  Google Scholar 

  3. Klymkowsky, M. W. (1981). Intermediate filaments in 3T3 cells collapse after intracellular injection of a monoclonal anti-intermediate filament antibody. Nature 291, 249–251.

    Article  CAS  PubMed  Google Scholar 

  4. Hollenbeck, P. J., Bershadsky, A. D., Pletjushkina, O. Y., Tint, I. S. & Vasiliev, J. M. (1989). Intermediate filament collapse is an ATP-dependent and actin-dependent process. J. Cell Sci. 92, 621–631.

    CAS  PubMed  Google Scholar 

Further references

  1. Wang, E., Fischmann, D., Liem, R. & Sun, T.-T., eds (1985). Intermediate filaments. Ann. N.Y. Acad. Sci., USA 445.

    Google Scholar 

  2. Parry, D. A. D. (1987). Fibrous protein structure and sequence analysis. In Fibrous Protein Structure, ed. Squire, J. M. & Vibert, P. J. London & San Diego: Academic Press.

    Google Scholar 

  3. Offer, G. (1987). Myosin filaments. In Fibrous Protein Structure, ed. Squire, J. M. & Vibert, P. J. London & San Diego: Academic Press.

    Google Scholar 

  4. Parry, D. A. D., Fraser, R. D. B., MacRae, T. P. & Suzuki, E. (1987). Intermediate filaments. In Fibrous Protein Structure, ed. Squire, J. M. & Vibert, P. J. London & San Diego: Academic Press.

    Google Scholar 

  5. Fuchs, E., Coppock, S., Green, H. & Cleveland, D. (1981). Two distinct classes of keratin genes and their evolutionary significance. Cell 27, 75–84.

    Article  CAS  PubMed  Google Scholar 

  6. Ip, W., Hartzer, M. K., Png, S. Y.-Y. & Robson, R. M. (1985). Assembly of vimentin in vitro and its implications concerning the structure of intermediate filaments. J. Mol. Biol. 183, 365–375.

    Article  CAS  PubMed  Google Scholar 

  7. Soellner, P., Quinlan, R. & Franke, W. W. (1985). Identification of a distinct soluble subunit of an intermediate filament protein: tetrameric vimentin from living cells. Proc. Natl. Acad. Sci., USA 82, 7929–7933.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Inagaki, M., Nishi, Y., Nishizawa, K., Matsuyama, M. & Sato, C. (1987). Site-specific phosphorylation induces disassembly of vimentin filaments in vitro. Nature 328, 649–652.

    Article  CAS  PubMed  Google Scholar 

  9. Geisler, N. & Weber, K. (1988). Phosphorylation of desmin in vitro inhibits formation of intermediate filaments: identification of three kinase A sites in the aminoterminal head domain. EMBO J. 7, 15–20.

    PubMed Central  CAS  PubMed  Google Scholar 

  10. McKeon, F. D. & Kirschner, M. W. (1986). Homologies in both primary and secondary structure between nuclear envelope and intermediate filament proteins. Nature 319, 463–468.

    Article  CAS  PubMed  Google Scholar 

  11. McLachlan, A. D. & Kam, J. (1983). Periodic features in the amino acid sequence of nematode myosin rod. J. Mol. Biol. 164, 605–626.

    Article  CAS  PubMed  Google Scholar 

  12. McLachlan, A. D. & Stewart, M. (1976). The 14-fold periodicity in a-tropomyosin and the interaction with actin. J. Mol. Biol. 103, 271–298.

    Article  CAS  PubMed  Google Scholar 

  13. Goldman, R. D., Goldman, A. E., Green, K., Jones, J. C. R., Jones, S. M. & Yang, H.-Y. (1986). Intermediate filament networks: organization and possible functions of a diverse group of cytoskeletal elements. J. Cell. Sci. Suppl. 5, 69–97.

    Article  CAS  PubMed  Google Scholar 

  14. Fey, E. G., Ornelles, D. A. & Penman, S. (1986). Association of RNA with the cytoskeleton and the nuclear matrix. J. Cell Sci. Suppl. 5, 99–119.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Copyright information

© 1991 L. A. Amos and W. B. Amos

About this chapter

Cite this chapter

Amos, L.A., Amos, W.B. (1991). Intermediate Filaments and other Alpha-Helical Proteins. In: Molecules of the Cytoskeleton. Macmillan Molecular Biology Series. Palgrave, London. https://doi.org/10.1007/978-1-349-21739-7_2

Download citation

Publish with us

Policies and ethics