Advertisement

Changes in the Cytoskeleton during Cell Division

  • Linda A. Amos
  • W. Bradshaw Amos
Chapter
Part of the Macmillan Molecular Biology Series book series

Abstract

The onset of cell division brings about greater changes in the structure of the cytoskeleton than occur at any other point in the cell cycle. Microtubules and bundles of actin-containing filaments are disassembled into subunits or small oligomers, ready for use in building new structures. Many intermediate filaments, on the other hand, do not disassemble but collapse into a meshwork closely associated with the nuclear membrane. They appear to have no active role in nuclear division or cytokinesis but are passively shared between the daughter cells.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Further reading

Reviews

  1. 1.
    Hyams, J. S. & Brinkley, B. R., eds (1989). Mitosis: molecules and mechanisms. San Diego: Academic Press. (Comprehensive and up-to-date.)Google Scholar
  2. 2.
    McIntosh, J. R. (1989). Assembly and disassembly of mitotic spindle microtubules. In Cell Movement, vol. 2, ed. Warner, F. D. & McIntosh, J. R. New York: Alan R. Liss. (Excellent, balanced and up-to-date discussion of motile mechanisms.)Google Scholar
  3. 3.
    Wolfe, S. L. (1981). Biology of the Cell, 2nd edn., pp. 404–425. Belmont, CA: Wadsworth. (A good short account of mitosis in general though not up to date on tubulin dynamics.)Google Scholar
  4. 4.
    Mazia, D. (1961). Mitosis and the physiology of cell division. In The Cell, vol. 3, ed. Brachet, J. & Mirsky, G, Chapter 2. New York: Academic Press. (A classic summary of early work.)Google Scholar
  5. 5.
    Inoué, S. (1981). Cell division and the mitotic spindle. J. Cell Biol. 91, 131s - 147s.CrossRefPubMedGoogle Scholar
  6. 6.
    Mitchison, T. J. (1988). Microtubule dynamics and kinetochore function in mitosis. Annu. Rev. Cell Biol. 4, 527–550.CrossRefGoogle Scholar
  7. 7.
    Sawin, K. & Mitchison, T. (1990). Motoring in the spindle. Nature 345, 22–23.CrossRefPubMedGoogle Scholar
  8. 8.
    Vallee, R. (1990). Dynein and the kinetochore. Nature 345, 206–207.CrossRefPubMedGoogle Scholar
  9. 9.
    McIntosh, J. R. & Koonce, M. P. (1989). Mitosis. Science 246, 622–628.CrossRefPubMedGoogle Scholar
  10. 10.
    Mitchison, T. & Hyman, A. (1988). Kinetochores on the move. Nature 336, 200–201.CrossRefPubMedGoogle Scholar
  11. 11.
    Rieder, C. L. (1982). The formation, structure and composition of the mammalian kinetochore and kinetochore fiber. Int. Rev. Cytol. 79, 1–58.CrossRefPubMedGoogle Scholar
  12. 12.
    Cande, W. Z. & Hogan, C. J. (1989). The mechanism of anaphase spindle elongation. Bioessays 11, 5–8. (A useful review of anaphase B.)CrossRefPubMedGoogle Scholar
  13. 13.
    Kellogg, D. R. (1989). Centrosomes: organizing cytoplasmic events. Nature 340, 99–100.CrossRefPubMedGoogle Scholar
  14. 14.
    Salmon, E. D. (1989). Cytokinesis in animal cells. Curr. Opinion Cell Biol. 1, 541–547. (A lucid short review, including recent work.)CrossRefGoogle Scholar
  15. 15.
    Rappaport, R. (1986). Establishment of the mechanism of cytokinesis in animal cells. Int. Rev. Cytol. 105, 245–281.CrossRefPubMedGoogle Scholar
  16. 16.
    Mabuchi, I. (1986). Biochemical aspects of cytokinesis. Int. Rev. Cytol. 101, 175–213.CrossRefPubMedGoogle Scholar
  17. 17.
    De Brabander, M., Geuens, G., Nuydens, R., Willebords, R., Aerts, F. & De Mey, J. (1986). Microtubule dynamics during the cell cycle: the effects of taxol and nocodazole on the microtubule system of Ptk2 cells at different stages of the mitotic cycle. Int. Rev. Cytol. 101, 215–274.CrossRefPubMedGoogle Scholar
  18. 18.
    Kubai, D. (1975). Unusual forms of mitosis. Int. Rev. Cytol. 43, 167–227.CrossRefPubMedGoogle Scholar

Original papers providing more detail

  1. 19.
    Gorbsky, G. L., Sammak, P. J. & Borisy, G. G. (1987). Chromosomes move poleward in anaphase along stationary microtubules that coordinately disassemble from their kinetochore ends. J. Cell Biol. 104, 9–18.CrossRefPubMedGoogle Scholar
  2. 20.
    Gorbsky, G. L., Sammak, P. J. & Borisy, G. G. (1988). Microtubule dynamics and chromosome motion visualized in living anaphase cells. J. Cell Biol. 106, 1185–1192.CrossRefPubMedGoogle Scholar
  3. 21.
    Gorbsky, G. J. & Borisy, G. G. (1989). Microtubules of the kinetochore fiber turn over in metaphase but not in anaphase. J. Cell Biol. 109, 653–662.CrossRefPubMedGoogle Scholar
  4. 22.
    Mitchison, T. J. and Kirschner, M. W. (1985). Properties of the kinetochore in vitro. II: Microtubule capture and ATP-dependent translocation. J. Cell Biol. 101, 766–777.CrossRefPubMedGoogle Scholar
  5. 23.
    Mitchison, T. L., Evans, L., Schultze, E. & Kirschner, M. (1986). Sites of microtubule assembly and disassembly in the mitotic spindle. Cell 45, 515–527.CrossRefPubMedGoogle Scholar
  6. 24.
    Koshland, D. E., Mitchison, T. J. & Kirschner, M. W. (1988). Polewards chromosome movement driven by microtubule depolymerization in vitro. Nature 331, 499–504.CrossRefPubMedGoogle Scholar
  7. 25.
    Mitchison, T. J. (1989). Polewards microtubule flux in the mitotic spindle: evidence from photoactivation of fluorescence. J. Cell Biol. 109, 637–652.CrossRefPubMedGoogle Scholar
  8. 26.
    Brinkley, B. R., Zinkowski, R. P., Mollon, W. L., Davis, F. M., Pisegna, M. A., Pershouse, M. & Rao, P. N. (1989). Movement and segregation of kinetochores experimentally detached from mammalian chromosomes. Nature 336, 251–254.CrossRefGoogle Scholar
  9. 27.
    Nicklas, R. B. (1983). Measurements of the force produced by the mitotic spindle in anaphase. J. Cell Biol. 97, 542–548.CrossRefPubMedGoogle Scholar
  10. 28.
    Masuda, H., McDonald, K. L. & Cande, W. Z. (1988). The mechanism of anaphase spindle elongation: uncoupling of tubulin incorporation and microtubule sliding during in vitro spindle reactivation. J. Cell Biol. 107, 623–633.CrossRefPubMedGoogle Scholar
  11. 29.
    Spurck, T. P. & Pickett-Heaps, J. D. (1987). On the mechanism of anaphase A: evidence that ATP is needed for microtubule disassembly and not generation of polewards force. J. Cell Biol. 105, 1691–1705.CrossRefPubMedGoogle Scholar
  12. 30.
    Salmon, E. D. & Segall, R. R. (1980). Calcium-labile mitotic spindles isolated from sea urchin eggs (Lytechinus variegatus). J. Cell Biol. 86, 355–365.CrossRefPubMedGoogle Scholar
  13. 31.
    Salmon, E. D., McKeel, M. & Hays, T. (1984). Rapid rate of tubulin dissociation from microtubules in the mitotic spindle in vivo measured by blocking polymerization with colchicine. J. Cell Biol. 99, 1066–1075.CrossRefPubMedGoogle Scholar
  14. 32.
    Peterson, S. P. & Berns, M. W. (1978). Evidence for centriolar region RNA functioning in spindle formation in dividing PTK2 cells. J. Cell Sci. 34, 289–301.CrossRefPubMedGoogle Scholar
  15. 33.
    Salmon, E. D. (1989). Metaphase chromosome congression and anaphase poleward movement. In Cell Movement, vol. 2, ed. Warner, F. D. & McIntosh, J. R. pp. 431–440. New York: Alan R. Liss.Google Scholar
  16. 34.
    Mitchison, T. J. (1989). Chromosome alignment at mitotic metaphase: balanced forces or smart kinetochores? In Cell Movement, vol. 2, ed. Warner, F. D. & McIntosh, J. R. pp. 421–430. New York: Alan R. Liss.Google Scholar
  17. 35.
    Inoué, S. (1976). Chromosome movement by reversible assembly of microtubules. In Cell Motility, ed. Goldman, C. R., Pollard, T. & Rosenbaum, J., pp. 1329–1342. New York: Cold Spring Harbor Laboratory.Google Scholar
  18. 36.
    Forer, A. (1965). Local reduction of spindle fiber birefringence in living Nephrotoma surturalis (Leow) spermatocytes induced by ultraviolet micro-beam irradiation. J. Cell Biol. 25, 95–117.PubMedCentralCrossRefPubMedGoogle Scholar
  19. 37.
    Amos, W. B. (1988). Results obtained with a sensitive confocal scanning system designed for epifluorescence. Cell Motil. & Cytoskel. 10, 54–61.CrossRefGoogle Scholar

Late additions

  1. 38.
    Verde, F., Labbe, J.-C., Doree, M. & Karsenti, E. (1990). Regulation of microtubule dynamics by cdc2 protein kinase in cell-free extracts of Xenopus eggs. Nature 343, 233–238.CrossRefPubMedGoogle Scholar
  2. 39.
    Rieder, C. L. & Alexander, S. P. (1990). Kinetochores are transported poleward along a single astral microtubule during chromosome attachment to the spindle in newt lung cells. J. Cell Biol. 110, 81–96.CrossRefPubMedGoogle Scholar

Copyright information

© L. A. Amos and W. B. Amos 1991

Authors and Affiliations

  • Linda A. Amos
    • 1
  • W. Bradshaw Amos
    • 1
  1. 1.Laboratory of Molecular BiologyMedical Research CouncilCambridgeUK

Personalised recommendations