Estimation

  • Marc Nerlove
  • Francis X. Diebold
Part of the The New Palgrave book series (NPA)

Abstract

Point estimation concerns making inferences about a quantity that is unknown but about which some information is available, e.g., a fixed quantity 6 for which we have n imperfect measurements x1 …, xn. The theory of estimation deals with how best to use the information (combine the values x1…, xn) to obtain a single number, estimate, for θ, say ##INLINE-EQUATION##. Interval estimation does not reduce the available information to a single number and is a special case of hypothesis testing. This article deals only with point estimation.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. Amemiya, T. 1983. Nonlinear regression models. In Handbook of Econometrics, Vol. 1, ed. Z. Griliches and M.D. Intriligator, Amsterdam: North-Holland.Google Scholar
  2. Barnard, G. A., Jenkins, G.M. and Winsten, C.B. 1962. Likelihood inference and time series (with discussion). Journal of the Royal Statistical Society, Series A, 125, 321–72.CrossRefGoogle Scholar
  3. Cox, D.R. and Hinkley, D.V. 1974. Theoretical Statistics. London: Chapman & Hall. Distributed in USA by Halsted Press.CrossRefGoogle Scholar
  4. Cramer, H. 1946. Mathematical Methods of Statistics. Princeton: Princeton University Press.Google Scholar
  5. Edwards, A.W.F. 1972. Likelihood. Cambridge and New York: Cambridge University Press.Google Scholar
  6. Fisher, R.J. 1925. Theory of statistical estimation. Proceedings of the Cambridge Philosophical Society 22, 700–25.CrossRefGoogle Scholar
  7. Gourieroux, C., Monfort, A. and Trognon, A. 1984. Pseudo maximum likelihood methods: theory. Econometrica 52, 681–700.CrossRefGoogle Scholar
  8. Haavelmo, T. 1944. The probability approach in econometrics. Econometrica 12, Supplement, July, 1–115.CrossRefGoogle Scholar
  9. Hampel, F.R., Ronchetti, E.M., Rousseeuw, P.J. and Stahel, W.A. 1985. Robust Statistics. New York: John Wiley.Google Scholar
  10. Hsiao, C. 1983. Identification. In Handbook of Econometrics, Vol. 1, ed. Z. Griliches and M. Intriligator, Amsterdam: North-Holland, 223–83.Google Scholar
  11. Huber, P.J. 1981. Robust Statistics. New York: John Wiley.CrossRefGoogle Scholar
  12. Jeffreys, H. 1961. Theory of Probability. 3rd edn, Oxford: Clarendon Press.Google Scholar
  13. Lehmann, E.L. 1983. The Theory of Point Estimation. New York: John Wiley.CrossRefGoogle Scholar
  14. Maritz, J.S. 1970. Empirical Bayes Analysis. London: Methuen.Google Scholar
  15. Neyman, J. and Scott, E.L. 1948. Consistent estimates based on partially consistent observations. Econometrica 16, 1–32.CrossRefGoogle Scholar
  16. Norden, R.H. 1972–3. A survey of maximum-likelihood estimation. Review of the International Institute of Statistics 40, 329–54; 41, 39–58.CrossRefGoogle Scholar
  17. Quandt, R.E. 1983. Computational problems and methods. In Handbook of Econometrics, Vol. 1, ed. Z. Griliches and M. Intriligator, Amsterdam: North-Holland, 699–764.Google Scholar
  18. Raiffa, H. and Schlaifer, R. 1961. Applied Statistical Decision Theory. Boston: Harvard Business School.Google Scholar
  19. Rao, C.R. 1973. Linear Statistical Inference and its Applications. 2nd edn, New York: John Wiley.CrossRefGoogle Scholar
  20. Sargan, J.D. 1980. Identification and lack of identification. Paper presented to 4th World Congress of the Econometric Society, 28 August–2 September 1980, Aix-en-Provence, France.Google Scholar
  21. Savage, L.J. 1954. The Foundations of Statistics. New York: John Wiley.Google Scholar
  22. Wald, A. 1950. Statistical Decision Functions. New York: John Wiley.Google Scholar
  23. White, H. 1982. Maximum-likelihood estimation of misspecified models. Econometrica 50, 1–25.CrossRefGoogle Scholar
  24. Zellner, A. 1971. An Introduction to Bayesian Inference in Econometrics. New York: John Wiley.Google Scholar

Copyright information

© Palgrave Macmillan, a division of Macmillan Publishers Limited 1990

Authors and Affiliations

  • Marc Nerlove
  • Francis X. Diebold

There are no affiliations available

Personalised recommendations