Advertisement

Abstract

THE ST PETERSBURG PARADOX AND THE BERNOULLIAN FORMULATION. Let there be a random prospect g1, …, gi, …, gn, …, p1, …, pi, …, pnipi = 1) giving the probability pi of positive or negative gains gi.

Keywords

Mathematical Expectation Random Choice Preference Index Risk Theory Monetary Gain 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. Allais, M. 1943. A la recherche d’ une discipline économique, Première partie: l’économie pure. Ateliers Industria, 920 pp. Second edition under the title Traité déconomie pure, Paris: Imprimerie Nationale, 1952, 5 vols. (The second edition is identical to the first, apart from the addition of a new introduction, 63 pp.)Google Scholar
  2. Allais, M. 1952a. Fondements d’une théorie positive des choix comportant un risque et critique des postulats et axiomes de l’école Américaine. International Conference on Risk, Centre National de la Recherche Scientifique, May 1952. Colloques Internationaux XL, Econométrie, Paris, 1953, 257–332.Google Scholar
  3. Allais, M. 1952b. The foundations of a positive theory of choice involving risk and a criticism of the postulates and axioms of the American school. English translation of 1952a. In Allais and Hagen (1979), 27–145.Google Scholar
  4. Allais, M. 1952c. Le comportement de l’homme rationnel devant le risque: critique des postulats et axiomes de l’école Américaine. Econometrica 21(4), October 1953,503–546. This paper corresponds to some parts of Allais, 1952a.CrossRefGoogle Scholar
  5. Allais, M. 1952d. La psychologie de l’homme rationnel devant le risque — la théorie et l’expérience. Journal de la Société de Statistique de Paris, January–March 1953,47–73.Google Scholar
  6. Allais, M. 1977. The so-called Allais’ Paradox and rational decisions under uncertainty. In Allais and Hagen (1979), 437–699.Google Scholar
  7. Allais, M. 1978. Editorial Introduction, Foreword. In Allais and Hagen (1979), 3–11.Google Scholar
  8. Allais, M. 1983. The foundations of the theory of utility and risk. In Progress in Decision Theory, ed. O. Hagen and F. Wenstop, Dordrecht: Reidel, 1984, 3–131.Google Scholar
  9. Allais, M. 1984a. L’utilité cardinale et sa détermination — hypothèses, méthodes et résultats empiriques. Memoir presented to the Second International Conference on Foundations of Utility and Risk Theory, Venice, 5–9 June 1984.Google Scholar
  10. Allais, M. 1984b. The cardinal utility and its determination — hypotheses, methods and empirical results. English version of 1984a, in Theory and Decision, 1987.Google Scholar
  11. Allais, M. 1984c. Determination of cardinal utility according to an intrinsic invariant model. Abridged version of 1984a in Recent Developments in the Foundations of Utility and Risk Theory, ed. L. Daboni et al, Dordrecht: Reidel, 1985, 83–120.Google Scholar
  12. Allais, M. 1985. Three theorems on the theory of cardinal utility and random choice. In Essays in Honour of Werner Leinfellner, ed. H. Berghel, Dordrecht: Reidel, 1986.Google Scholar
  13. Allais, M. and Hagen, O. (eds) 1979. Expected Utility Hypotheses and the Allais’ Paradox; Contemporary Discussions and Rational Decisions under Uncertainty with Allais’ Rejoinder. Dordrecht: Reidel.Google Scholar
  14. Amihud, Y. 1974. Critical examination of the new foundation of utility. In Allais and Hagen (1979), 149–60.Google Scholar
  15. Amihud, Y. 1977. A reply to Allais. In Allais and Hagen (1979), 185–90.Google Scholar
  16. Bernoulli, D. 1738. Specimen theoriae novae de mensura sortis. Trans, as ‘Exposition of a new theory on the measurement of risk’. Econometrica 22 (1954), 23–36.CrossRefGoogle Scholar
  17. de Finetti, B. 1977. A short confirmation of my standpoint. In Allais and Hagen (1979), 161.Google Scholar
  18. Friedman, M. and Savage, J.L. 1948. The utility analysis of choices involving risk. Journal of Political Economy 56, August, 279–304.CrossRefGoogle Scholar
  19. MacCrimmon, K. and Larsson, S. 1975. Utility theory: axioms versus paradoxes. In Allais and Hagen (1979), 333–409.Google Scholar
  20. Marschak, J. 1950. Rational behavior, uncertain prospects and measurable utility. Econometrica 18(2), April, 111–41.CrossRefGoogle Scholar
  21. Marschak, J. 1951. Why ‘should’ statisticians and businessmen maximize moral expectation? In Proceedings of the Second Berkeley Symposium on Mathematical Statistics and Probability, Berkeley: University of California Press.Google Scholar
  22. Marschak, J. 1977. Psychological values, and decision makers. In Allais and Hagen (1979), 163–75.Google Scholar
  23. Morgenstern, O. 1976. Some reflections on utility. In Allais and Hagen (1979), 175–83.Google Scholar
  24. Samuelson, P. 1952. Utility, preference and probability. International Conference on Risk, Centre National de la Recherche Scientifique, Paris, May 1952. Colloques Internationaux XL, Econométrie, Paris, 1953, 141–50.Google Scholar
  25. Savage, L. 1952. An axiomatization of reasonable behavior in the face of uncertainty. International Conference on Risk, Paris, May 1952. Centre National de la Recherche Scientifique, Colloques Internationaux XL, Econométrie, Paris, 1953, 29–33.Google Scholar
  26. Savage, L. 1954. The Foundations of Statistics. New York: Wiley.Google Scholar
  27. von Neumann, J. and Morgenstern, O. 1947. Theory of Games and Economic Behavior. 2nd edn, Princeton: Princeton University Press.Google Scholar

Copyright information

© Palgrave Macmillan, a division of Macmillan Publishers Limited 1990

Authors and Affiliations

  • Maurice Allais

There are no affiliations available

Personalised recommendations