Practical Implementation of Digital Filters

  • Trevor J. Terrell
Part of the New Electronics book series (NE)


Having selected or derived the desired digital filter pulse transfer function, G(Z), (see chapter 2 and chapter 3) and, furthermore, having determined the appropriate processor word length (see chapter 4), then the next step is to undertake the implementation of the filter’s linear difference equation corresponding to G(Z). This linear difference equation is used to compute the filter’s output y(n)T values, which will be a filtered version of the filter’s input x(n)T values (see figure 1.1).


Digital Filter Digital Signal Processor Texas Instrument Program Counter Linear Difference Equation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D. Queyssac (ed.), Understanding Microprocessors (Motorola Inc., 1976), chapter 2.Google Scholar
  2. 2.
    R. J. Simpson and T. J. Terrell, Introduction to 6800/6802 Microprocessor Systems (Newnes Technical Books — Butterworth & Co, Sevenoaks, 1982).Google Scholar
  3. 3.
    D. Quarmby, Signal Processor Chips (Granada Publishing, London, 1984).Google Scholar
  4. 4.
    R. J. Simpson and T. J. Terrell, ‘Digital Filtering using the NEC µPD7720 signal processor’, Microprocessing and Microprogramming, 14 (1984) pp. 67–78.CrossRefGoogle Scholar
  5. 5.
    ‘Digital Signal Processing with the MS2014 FAD’, Electronic Product Design, (May 1986) pp. 49–56.Google Scholar
  6. 6.
    P. F. Adams, J. R. Harbridge and R. H. Macmillan, ‘An MOS Integrated Circuit for Digital Filtering and Level Detection’, IEEE Journal of Solid-State Circuits, SC-16,3, (1981) pp. 183–190.CrossRefGoogle Scholar
  7. 7.
    TMS320C25 Digital Signal Processor — Product Description, Texas Instruments, Bedford (1986).Google Scholar
  8. 8.
    TMS32010 User’s Guide, Texas Instruments, Bedford (1983).Google Scholar
  9. 9.
    DSP56000 Product Description, Motorola, Glasgow (1986).Google Scholar
  10. 10.
    H. T. Kung, ‘Systolic Arrays for VLSI’, Sparse Matrix Proc: SIAM, Philadelphia (1979).Google Scholar
  11. 11.
    S. Y. Kung et al., ‘ ‘Wavefront Array’ Processor: Language, Architecture and Applications’, IEEE Trans. Comput. (1982) pp. 1054–66.Google Scholar
  12. 12.
    S. Y. Kung, H. J. Whitehouse and T. Kailath, VLSI and Modern Signal Processing, (Prentice-Hall, Englewood Cliffs, N.J., 1985).Google Scholar
  13. 13.
    E. E. Swartzlander, Jr, VLSI Signal Processing Systems (Kluwer Academic Publishers, Publishers, Hingham, Massachusetts, 1986).MATHGoogle Scholar
  14. 14.
    P. Denyer and D. Renshaw, VLSI Signal Processing: a bit-serial approach (Addison-Wesley, Wokingham, 1985).Google Scholar
  15. 15.
    M. Della Corte and O. Cerofolini, ‘Application of a Digital Filter to Biomedical Signals’, Med. biol. Engng. (1974) 374–7.Google Scholar
  16. 16.
    P. A. Lynn, An Introduction to the Analysis and Processing of Signals (Macmillan, London, 1973) chapter 10.Google Scholar
  17. 17.
    D. J. Burt, ‘Basic Operation of the Charge Coupled Device’, Conference Publication: Technology and Applications of Charge Coupled Devices, University of Edinburgh, (1974) 1–12.Google Scholar

Copyright information

© Trevor J. Terrell 1988

Authors and Affiliations

  • Trevor J. Terrell
    • 1
  1. 1.Lancashire PolytechnicUK

Personalised recommendations