Randomised Experiments: Some Interpretational Issues

  • R. Steyer


Randomised experiments are among the most important procedures to test causal hypotheses. Oftentimes randomisation is even considered to be the essential condition to define the ‘true experiment’. Kenny (1979, p. 184), for example, writes: The key feature of the true experiment is random assignment of experimental units to conditions.’ Cook and Campbell (1979, p. 6) distinguish quasi-experiments from true experiments as ‘experiments that have treatments, outcome measures, and experimental units, but do not use random assignment to create comparisons from which treatment-caused change is inferred’.


Good Prediction Conditional Expectation Experimental Unit Random Assignment Average Property 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. BAUER, H., Wahrscheinlichkeitstheorie und Grundzüge der Maßtheorie (Berlin: de Gruyter, 1974).Google Scholar
  2. BREDENKAMP, J., Theorie und Planung psychologischer Experimente (Darmstadt: Steinkopff, 1980).CrossRefGoogle Scholar
  3. BREIMAN, L., Probability (Reading, Mass.: Addison-Wesley, 1968).Google Scholar
  4. COOK, T. D. and CAMPBELL, D. T., Quasi-experimentation: Design and Analysis Issues for Field Settings (Boston: Houghton Mifflin, 1979).Google Scholar
  5. GÄNSSLER, P. and STUTE, H., Wahrscheinlichkeitstheorie (Berlin: Springer, 1977).CrossRefGoogle Scholar
  6. KENNY, D. A., Correlation and Causality (New York: Wiley, 1979).Google Scholar
  7. KOLMOGOROV, A. N., Grundbegriffe der Wahrscheinlichkeitsrechnung (Berlin: Springer, 1933).CrossRefGoogle Scholar
  8. LANE, D. M., Testing Main Effects of Continuous Variables in Nonadditive Models’, Multivariate Behavioral Research, 16 (1981) 499–509.CrossRefGoogle Scholar
  9. LOÈVE, M., Probability Theory, vol. I (Berlin: Springer, 1977).CrossRefGoogle Scholar
  10. Probability Theory, vol. II (Berlin: Springer, 1978).Google Scholar
  11. STEYER, R., ‘A Class of Nonadditive Linear Models with Three Variables’. (Trierer Psychologische Berichte, 10, 3). Trier: University of Trier, Fachbereich I — Psychologie (1983a).Google Scholar
  12. STEYER, R., ‘Additive Linear Models with Three Variables’. (Trierer Psychologische Berichte, 10, 4). Trier: University of Trier, Fachbereich I — Psychologie (1983b).Google Scholar
  13. STEYER, R., ‘Conditional Expectations: An Introduction to the Concept and its Applications in the Empirical Sciences’. (Trierer Psychologische Berichte, 11, 3). Trier: University of Trier, Fachbereich I — Psychologie (1984a).Google Scholar
  14. STEYER, R., ‘Causal Linear Stochastic Dependencies: the Formal Theory’, in DEGREEF, E. and BUGGENHAUT, J. van (eds) Trends in Mathematical Psychology (Amsterdam: North-Holland, 1984b).Google Scholar
  15. STEYER, R., ‘Causal Regressive Dependencies: an Introduction’, in NESSELRODE, J. R. and EYE, A. von (eds) Individual Development and Social Change: Explanatory Analysis (New York: Academic Press, 1985).Google Scholar

Copyright information

© Willem E. Saris and Irmtraud N. Gallhofer 1988

Authors and Affiliations

  • R. Steyer

There are no affiliations available

Personalised recommendations