Substrate and regulatory functions of eicosapentaenoic and docosahexaenoic acids for the 5-lipoxygenase pathway

  • T. H. Lee
  • J. M. Drazen
  • R. A. Lewis
  • K. F. Austen


Arachidonic acid (AA) released from membrane phospholipids by phospholipases during cell activation may be oxidatively metabolized by the enzymes of the cyclo-oxygenase or the 5-lipoxygenase pathway. The 5-lipoxygenase pathway, which exhibits a more limited cellular distribution than the cyclooxygenase pathway (Samuelsson et al., 1978; Lewis & Austen, 1984), generates 5(S)-hydroperoxy-6-trans-8,11,14-cis-eicosatetraenoic acid (5-HPETE) from AA. 5-HPETE is reduced to 5(S)-hydroxy-6-trans-8,11,14-cis-eicosatetraenoic acid (5-HETE) (Borgeat & Samuelsson, 1979a) or is converted to an epoxide, 5,6-oxido-7,9-trans-11,14-cis-eicosatetraenoic acid (leukotriene A4, LTA4) (Borgeat & Samuelsson, 1979b; Rådmark et al., 1980; Hammarstrom & Samuelsson, 1980). LTA4 is processed by an epoxide hydrolase to 5(S),12(R)-dihydroxy-6,14-cis-8,10-trans-eicosatetraenoic acid (LTB4) Borgeat & Samuelsson, 1979c) or by a glutathione-S-transferase to 5(S)-hydroxy-6R-(S)-glutathionyl-7,9-trans-11,14,-cis-eicosatetraenoic acid (LTC4) (Murphy et al., 1979; Bach et al., 1980).


Tracheal Smooth Muscle Smooth Muscle Cell Line Parenchymal Strip Alternative Fatty Acid Cysteine Glycine 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. BACH, M.K., BRASHLER, J.R., HAMMARSTRÖM, S. & SAMMUELSSON, B. (1980). Identification of C-1 as a major component of slow reacting substance from rat mononuclear cells. J. Immunol., 125, 115–117.PubMedGoogle Scholar
  2. BADR, K.F., BAYLIS, C., PFEFFER, J.M., PFEFFER, M.A., SOBERMAN, R.J., LEWIS, R.A., AUSTEN, K.F., COREY, E.J. & BRENNER, B.M. (1984). Renal and systemic hemodynamic response to intravenous infusion of leukotriene C4 in the rat. Circ. Res., 54, 492–499.PubMedCrossRefGoogle Scholar
  3. BORGEAT, P. & SAMUELSSON, B. (1979a). Metabolism of arachidonic acid in polymorphonuclear leukocytes: structural analysis of novel hydroxylated compounds. J. biol. Chem., 254, 7865–7868.PubMedGoogle Scholar
  4. BORGEAT, P. & SAMUELSSON, B. (1979b). Arachidonic acid metabolism in polymorphonuclear leukocytes: unstable intermediate information of dihydroxy acids. Proc. natn. Acad. Sci. U.S.A., 76, 3213–3217.CrossRefGoogle Scholar
  5. BORGEAT, P. & SAMUELSSON, B. (1979c). Arachidonic acid metabolism in polymorphonuclear leukocytes: effects of ionophore A23187. Proc. natn. Acad. Sci. U.S.A., 76, 2148–2152.CrossRefGoogle Scholar
  6. BORGEAT, P. & SAMUELSSON, B. (1979d). Transformation of arachidonic acid by rabbit polymorphonuclear leukocytes. Formation of a novel dihydroeicosatetraenoic acid. J. biol. Chem., 255, 2643–2646.Google Scholar
  7. BRUNS, R.F., THOMSEN, W.J. & PUGSLEY, T.A. (1983). Binding of leukotrienes C4 and D4 to membranes from guinea pig lung: regulation by ions and guanine nucleotides. Life Sci., 33, 645–653.PubMedCrossRefGoogle Scholar
  8. COREY, E.J., SHIH, C. & CASHMAN, J.R. (1983). Docosahexaenoic acid is a strong inhibitor of prostaglandin but not leukotriene biosynthesis. Proc. natn. Acad. Sci. U.S.A., 80, 3581–3584.CrossRefGoogle Scholar
  9. CREESE, B.R. & BACH, M.K. (1983). Hyperreactivity of airway smooth muscle produced in vitro by leukotrienes. Prost. Leuk. Med., 11, 161–169.CrossRefGoogle Scholar
  10. CROMWELL, O., SHAW, R.J., DURHAM, S.R. & KAY, A.B. (1984). Plasma LTB4 concentrations during early and late phase antigen-induced asthmatic reactions. J. Allergy clin. Immun., 73, 147 (abstr.)Google Scholar
  11. CROMWELL, O., WALPORT, M.J., MORRIS, H.R., TAYLOR, S.W., HODSON, M.E., BATTEN, J.E. & KAY, A.B. (1981). Identification of leukotrienes D and B in sputum from cystic fibrosis patients. Lancet. ii, 164–165.CrossRefGoogle Scholar
  12. DAHLEN, S.E., BJORK, J., HEDQVIST, P., ARFORS, K.-E., HAMMARSTRÖM, S., LINDGREN, J.-A. & SAMUELSSON, B. (1981). Leukotrienes promote plasma leakage and leukocyte adhesion in post-capillary venules: in vivo effects with relevance to the acute inflammatory response. Proc. natn. Acad. Sd. U.S.A., 78, 3887–3891.CrossRefGoogle Scholar
  13. DAHLÉN, S.E., HEDQVIST, P. & HAMMARSTRÖM, S. (1982). Contractile activities of several cysteinecontaining leukotrienes in the guinea pig lung strip. Eur. J. Pharmac., 86, 207–215.CrossRefGoogle Scholar
  14. DRAZEN, J.M., AUSTEN, K.F., LEWIS, R.A., CLARK, D.A., GOTO, G., MARFAT, A. & COREY, E.J. (1980). Comparative airway and vascular activities of leukotrienes C-1 and D in vivo and in vitro. Proc. natn. Acad. Sci. U.S.A., 77, 4354–4358.CrossRefGoogle Scholar
  15. DRAZEN, J.M., FANTA, C.H., LACOUTRE, P.O. & COREY, E.J. (1984). Physiologic evidence for leukotriene receptor heterogeneity in guinea pig pulmonary parechymal strips in vitro. Clin. Res., 32, 528A (Abst.).Google Scholar
  16. DRAZEN, J.M., LEWIS, R.A., AUSTEN, K.F. & COREY, E.J. (1983). Pulmonary pharmacology of the SRS-A leukotrienes. In Leukotrienes and Prostacyclin. Berti, F., Folco, G. & Velo, G. (eds) pp. 125–134, New York: Plenum Press.CrossRefGoogle Scholar
  17. DYERBERG, J., BANG, H.O., STOFFERSEN, G., MONCADA, S. & VANE, J.R. (1978). Eicosapentaenoic acid and prevention of thrombosis and atherosclerosis. Lancet, i, 117–119.CrossRefGoogle Scholar
  18. FORD-HUTCHINSON, A.W., BRAY, M.A., DOIG, M.V., SHIPLEY, M.E. & SMITH, M.J.H. (1980). Leukotriene B, a potent chemokinetic and aggregating substance from polymorphonuclear leukocytes. Nature, 1286, 264–265.CrossRefGoogle Scholar
  19. GOLDMAN, D.W., PICKETT, W.C. & GOETZL, E.J. (1983). Human neutrophil chemotactic and degranulating activities of leukotriene B5 (LTB5) derived from eicosapentaenoic acid. Biochem. biophys. Res. Commun., 117, 282–288.PubMedCrossRefGoogle Scholar
  20. GRIFFIN, M., WEISS, J.W., LEITCH, A.G., McFADDEN, E.R., COREY, E.J., AUSTEN, K.F. & DRAZEN, J.M. (1983). Effects of leukotriene D on the airways in asthma. New Engl. J. Med., 308, 436–439.PubMedCrossRefGoogle Scholar
  21. HAM, E.A., SODERMAN, D.D., ZANETTI, M.E., DOUGHERTY, H.W., McCAULEY, E. & KUEL, F. (1983). Inhibition by prostaglandins of leukotriene B4 release from activated neutrophils. Proc. natn. Acad. Sci. U.S.A., 80, 4349–4353.CrossRefGoogle Scholar
  22. HAMMARSTROM, S. (1980). Leukotriene C5: a slow reacting substance derived from eicosapentaenoic acid. J. biol. Chem., 255, 7093–7094.PubMedGoogle Scholar
  23. HAMMARSTRÖM, S. (1981). Conversion of [14C]-labeled eicosapentaenoic acid (N-3) to leukotriene C5. Biochim. Biophys. Acta, 663, 575–577.PubMedCrossRefGoogle Scholar
  24. HAMMARSTRÖM, S. & SAMUELSSON, B. (1980). Detection of leukotriene A4 as an intermediate in the biosynthesis of leukotriene C4 and D4. FEBS Lett., 122, 83–88.CrossRefGoogle Scholar
  25. HOGABOOM, G.K., MONG, S., WU, H.-L. & CROOKE, S. (1983). Peptidoleukotrienes: distinct receptors for leukotrienes C4 and D4 in the guinea pig lung. Biochem. biophys. Res. Commun., 116, 1136–1143.PubMedCrossRefGoogle Scholar
  26. HOLDROYDE, M.C., ALTOUNYAN, R.E.C., COLE, M., DIXON, M. & ELLIOT, E.V. (1981). Bronchoconstriction produced in man by leukotriene C and D. Lancet, 2, 17–19.CrossRefGoogle Scholar
  27. HOOVER, R.L., KARNOVSKY, M.L., AUSTEN, K.F., COREY, E.J. & LEWIS, R.A. (1984). Leukotriene B4 action on endothelium mediates augmented neutrophil/endothelial adhesion. Proc. nam. Acad. Sci. U.S.A., 81, 2191–2193.CrossRefGoogle Scholar
  28. ISRAEL, E., LEE, T.J., AUSTEN, K.F., COREY, E.J., ROBINSON, D.R. & DRAZEN, J.M. (1984). Fish oil-enriched diet modified the guinea pig pulmonary parenchymal response to leukotriene B4. Am. Rev. respir. Dis., 129, A232 (abstr.).Google Scholar
  29. KRILIS, S., LEWIS, R.A., COREY, E.J. & AUSTEN, K.F. (1984). Specific binding of leukotriene C4 to ileal segments and subcellular fractions of ileal smooth muscle. Proc. natn. Acad. Sci. U.S.A. (in press).Google Scholar
  30. KRILIS, S., LEWIS, R.A., COREY, E.J. & AUSTEN K.F. (1983a). Bioconversion of C-6 sulfidopeptide leukotrienes by the responding guinea pig ileum determines the time course of its contraction. J. clin. Invest., 71, 909–915.PubMedPubMedCentralCrossRefGoogle Scholar
  31. KRILIS, S., LEWIS, R.A., COREY, E.J. & AUSTEN, K.F. (1983b). Specific binding of leukotriene C4 on a smooth muscle cell line, J. Clin. Invest.,72, 1516–1519.PubMedPubMedCentralCrossRefGoogle Scholar
  32. LEE, T.H., AUSTEN, K.F., COREY, E.J. & DRAZEN, J.M. (1984). LTE4-induced airway hyperresponsiveness of guinea pig tracheal smooth muscle to histamine and evidence for three separate sulfidopeptide leukotriene receptors. Proc. natn. Acad. Sci. U.S.A. (in press).Google Scholar
  33. LEE, T.H., LEITCH, A.G., ROBINSON, D.R., DRAZEN, J.M., AUSTEN, K.F. & LEWIS, R.A. (1984c). Dietary fatty acid effects on plasma leukotriene B concentrations and pulmonary responses in guinea pig anaphylaxis. Fedn Proc., 43, 1807.Google Scholar
  34. LEE, T.H., LEWIS, R.A., ROBINSON, D.R., DRAZEN, J.M. & AUSTEN, K.F. (1984b). The effects of a diet enriched in menhaden fish oil on the pulmonary response to antigen challenge. J. Allergy clin. Immun., 73, 150 (abstr.).CrossRefGoogle Scholar
  35. LEE, T.H., MENCIA-HUERTA, J.-M., SHIH, C., COREY, E.J., LEWIS, R.A. & AUSTEN, K.F. (1984a). Characterization and biologic properties of 5,12-dihydroxy derivatives of eicosapentaenoic acid, including leukotrienes B5 and the double lipoxygenase product. J. biol. Chem., 259, 2383–2389.PubMedGoogle Scholar
  36. LEITCH, A.G., AUSTEN, K.F., COREY, E.J. & DRAZEN, J.M. (1983a). Effect of indomethacin on the guinea pig pulmonary response to intravenous leukotriene C4 and D4. Clin. Sci., 65, 281–287.PubMedCrossRefGoogle Scholar
  37. LEITCH, A.G., COREY, E.J., AUSTEN, K.F. & DRAZEN, J.M. (1983b). Indomethacin potentiates the pulmonary response to aerosol leukotriene C4 in the guinea pig. Am. Rev. respir. Dis., 128, 639–643.PubMedGoogle Scholar
  38. LEITCH, A.G., LEE, T.H., RINGEL, E.W., PRICKETT, J.D., ROBINSON, D.R., PYNE, S.G., COREY, E.J., DRAZEN, J.M., AUSTEN, K.F. & LEWIS, R.A. (1984). Immunologically-induced generation of tetraene and pentaene leukotrienes in the peritoneal cavities of menhaden-fed rats. J. Immunol., 132, 2559–2564.PubMedGoogle Scholar
  39. LEWIS, R.A. & AUSTEN, K.F. (1984). The biologically active leukotrienes. J. clin. Invest., 73, 889–897.PubMedPubMedCentralCrossRefGoogle Scholar
  40. LEWIS, R.A., AUSTEN, K.F., DRAZEN, J.M., CLARK, D.A., MARFAT, A. & COREY, E.J. (1980a). Slow reacting substance of anaphylaxis: identification of leukotriene C-1 and D from human and rat sources. Proc. natn. Acad. Sci. U.S.A., 77, 3710–3714.CrossRefGoogle Scholar
  41. LEWIS, R.A., DRAZEN, J.M., AUSTEN, K.F., CLARK, D.A. & COREY, E.J. (1980b). Identification of the C(6)-S conjugate of leukotriene A with cysteine as a naturally occurring slow reacting substance of anaphylaxis (SRS-A). Importance of the 11-cis geometry for biological activity. Biochem. biophys. Res. Commun., 96, 271–277.PubMedCrossRefGoogle Scholar
  42. LEWIS, R.A., GOETZL, E.J., DRAZEN, J.M., SOTER, N.A., AUSTEN, K.F. & COREY, E.J. (1981). Functional characterization of synthetic leukotriene B and its stereochemical isomers. J. exp. Med., 154, 1243–1248.PubMedCrossRefGoogle Scholar
  43. MORRIS, H.R., TAYLOR, G.W., PIPER, P.J. & TIPPINS, J.R. (1980). Structure of slow reacting substance of anaphylaxis from guinea pig lung. Nature, 258, 104–105.CrossRefGoogle Scholar
  44. MURPHY, R.C., HAMMARSTROM, S. & SAMUELSSON, B. (1979). Leukotriene C: a slow reacting substance from murine mastocytoma cells. Proc. natn. Acad. Sci. U.S.A., 76, 4275–4279.CrossRefGoogle Scholar
  45. MURPHY, R.C., PICKETT, W.C., CULP, B.R. & LANDS, W.E.M. (1981). Tetraene and pentaene leukotrienes: selective production from murine mastocytoma cells after dietary manipulation. Prostaglandins, 22, 613–622.PubMedCrossRefGoogle Scholar
  46. NAGY, L., LEE, T.H., GOETZL, E.J., PICKETT, W. & KAY, A.B. (1982). Complement receptor enhancement and chemotaxis of human neutrophils and eosinophils by leukotrienes and other lipoxygenase products. Clin. exp. Immunol., 47, 541–547.PubMedPubMedCentralGoogle Scholar
  47. NEEDLEMAN, P., RAZ, A., MINKES, N.S., FERENDELLI, J.A. & SPRECHER, H. (1979). Triene prostaglandins: prostacyclin and thromboxane biosynthesis and unique biological properties. Proc. natn. Acad. Sci. U.S.A., 76, 944–948.CrossRefGoogle Scholar
  48. NICOSIA, S., CROWLEY, H.J., OLIVA, D. & WELTON, A.F. (1984). Binding sites for 3H-LTC4 in membranes from guinea pig ileal longitudinal muscle. Prostaglandins, 27, 483–494.PubMedCrossRefGoogle Scholar
  49. OCHI, K., YOSHIMOTO, T., YAMAMOTO, S., TANIGUCHI, K. & MIYAMOTO, T. (1983). Arachidonate 5-lipoxygenase of guinea pig peritoneal polymorphonuclear leukocytes. J. biol. Chem., 258, 5754–5758.PubMedGoogle Scholar
  50. ÖRNING, L., BERNSTRÖM, K. & HAMMARSTRÖM, S. (1981). Formation of leukotrienes E3, E4 and E5 in rat basophilic leukemia cells. Eur. J. Biochem., 120, 41–45.PubMedCrossRefGoogle Scholar
  51. PALMER, R.M.J., STEPHNEY, R.J., HIGGS, G.A. & EAKINS, K.-E. (1980). Chemokinetic activity of arachidonic and lipoxygenase products on leukocytes of different species. Prostaglandins, 20, 411–414.PubMedCrossRefGoogle Scholar
  52. PARKER, C.W., FALKENHEIN, S.G. & HUBER, M.M. (1980). Sequential conversion of the glutathionyl side chain of slow reacting substances (SRS) to cysteine glycine and cysteine in rat basophilic leukemia cells stimulated with A23187. Prostaglandins, 20, 863–886.PubMedCrossRefGoogle Scholar
  53. PONG, S.S. & DeHAVEN, R.N. (1983). Characterization of a leukotriene D4 receptor in guinea pig lung. Proc. natn. Acad. Sci. U.S.A., 80, 7415–7419.CrossRefGoogle Scholar
  54. PONG, S.S., DeHAVEN, R.N., KUEKL, R.A., Jr & EGAN, R.W. (1983). Leukotriene C4 binding to rat lung membranes. J. biol. Chem., 258, 9616–9619.PubMedGoogle Scholar
  55. PRICKETT, J.D., ROBINSON, D.R. & STEINBERG, A.D. (1981). Dietary enrichment with the polyunsaturated fatty acid eicosapentaenoic acid prevents proteinuria and prolongs survival in NZB xNZW F1mice. J. clin. Invest., 68, 556–559.PubMedPubMedCentralCrossRefGoogle Scholar
  56. PRICKETT, J.D., TRENTHAM, D.W. & ROBINSON, D.R. (1984). Dietary fish oil augments the induction of arthritis in rats immunized with type II collagen. J. Immunol., 132, 725–729.PubMedGoogle Scholar
  57. RÅDMARK, O., MALMSTEN, C., SAMUELSSON, B., GOTO, G., MARFAT, A. & COREY, E.J. (1980). Leukotriene A: isolation from human polymorphonuclear leukocytes. J. biol. Chem., 255, 11828–11831.PubMedGoogle Scholar
  58. SAMUELSSON, B., GOLDYNE, E., GRANSTROM, E., HAMBERG, M., HAMMARSTRÖM, S. & MALMSTEN, C. (1978). Prostaglandins and thromboxanes. A. Rev. Biochem., 47, 997–1029.CrossRefGoogle Scholar
  59. SHOWELL, H.J., NACCACHE, P.H., BORGEAT, P., PICARD, S., VALLERAND, P., BECKER, E.L. & SHA’AFI, R.I. (1982). Characterization of the secretory activity of leukotriene B4 toward rabbit neutrophils. J. Immunol., 128, 811–816.PubMedGoogle Scholar
  60. SIROIS, P., ROY, S. & BORGEAT, P. (1981). The lung parenchymal strip as a sensitive assay for leukotriene B4. Prostaglandins Med., 6, 153–159.PubMedCrossRefGoogle Scholar
  61. SMITH, M.J.H. (1981). Leukotriene B4. Gen. Pharmac., 12, 211–216.CrossRefGoogle Scholar
  62. SOBERMAN, R.J., LEWIS, R.A., COREY, E.J. & AUSTEN, K.F. (1984). The characterization of two lipoxygenases from the human PMN. Fedn Proc., 43, 1879 (abstr.)Google Scholar
  63. SOTER, N.A., LEWIS, R.A., COREY, E.J. & AUSTEN, K.F. (1983). Local effects of synthetic leukotrienes (LTC4, LTD4, LTE4 and LTB4) in human skin. J. invest. Dermatol., 80, 115–119.PubMedCrossRefGoogle Scholar
  64. STENMARK, K.R., JAMES, S.L., VOELKEL, N.F., TOEWS, W.H., REEVES, J.T. & MURPHY, R.C. (1983). Leukotriene C4 and D4 in neonates with hypoxemia and pulmonary hypertension. New Engl. J. Med., 309, 77–80.PubMedCrossRefGoogle Scholar
  65. TERANO, T., SALMON, J.A. & MONCADA, S. (1984). Biosynthesis and biological activity of leukotriene B5. Prostaglandins, 27, 217–232.PubMedCrossRefGoogle Scholar
  66. TURNBULL, L.S., TURNBULL, L.W., LEITCH, A.G., CROFTON, J.W. & KAY, A.B. (1977). Mediators of immediatetype hypersensitization in sputum from patients with chronic bronchitis and asthma. Lancet, ii, 526–529.CrossRefGoogle Scholar
  67. WEISS, J.W., DRAZEN, J.M., COLES, N., McFADDEN, E.R. WELLER, P.F., COREY, E.J., LEWIS, R.A. & AUSTEN, K.F. (1982). Bronchoconstrictor effects of leukotriene C in humans. Science, 216, 196–198.PubMedCrossRefGoogle Scholar

Copyright information

© Macmillan Publishers Limited 1984

Authors and Affiliations

  • T. H. Lee
    • 1
    • 2
  • J. M. Drazen
    • 1
    • 3
    • 4
  • R. A. Lewis
    • 1
    • 2
  • K. F. Austen
    • 1
    • 2
  1. 1.Department of MedicineHarvard Medical SchoolBostonUSA
  2. 2.Departments of Rheumatology and ImmunologyBrigham and Women’s HospitalBostonUSA
  3. 3.Departments of Rheumatology and Immunology and of MedicineBrigham and Women’s HospitalBostonUSA
  4. 4.Department of PhysiologyHarvard School of Public HealthBostonUSA

Personalised recommendations