Electrophysiology of GABA receptors in the vertebrate central nervous system

  • R. A. Nicoll
  • N. R. Newberry


The role of gamma aminobutyric acid (GABA) in synaptic transmission in the central nervous system (CNS) is more firmly established than for any other transmitter. In addition, virtually every neurone receives a strong GABAergic input. It has long been known that the ionic mechanism involved in the inhibitory action of GABA involves an increase in membrane conductance to chloride ions. This action is blocked by a number of relatively selective antagonists, such as bicuculline. A number of recent studies have provided new insight into the action of GABA. First, the introduction of two new biophysical techniques, fluctuation analysis (Barker, et al., 1982) and single-channel recording (Hamill, et al., 1983) have considerably advanced our understanding of the properties of GABA-activated chloride channels. Secondly, GABA may have actions which do not involve chloride ions and are resistant to the action of known GABA antagonists.


Pyramidal Cell Reversal Potential Gaba Receptor Potassium Conductance Axon Initial Segment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. ALGER, B.E. (1984). Hippocampus: electrophysiological studies of epithelium activity in vitro. In Brain Slices. Dingledine, R. (ed.) pp. 155–193. New York: Plenum Press.CrossRefGoogle Scholar
  2. ALGER, B.E. & NICOLL, R.A. (1980). Epileptiform burst afterhyperpolarization: calcium-dependent potassium potential in hippocampal CAl pyramidal cells. Science, 210, 1122–1124.PubMedCrossRefGoogle Scholar
  3. ALGER, B.E. & NICOLL, R.A. (1982a). Feed-forward dendritic inhibition in rat hippocampal pyramidal cells studied in vitro. J. Physiol., 328, 195–223.Google Scholar
  4. ALGER, B.E. & NICOLL, R.A. (1982b). Pharmacological evidence for two kinds of GABA receptor on rat hippocampal pyramidal cells studied in vitro. J. Physiol., 328, 125–141.PubMedPubMedCentralCrossRefGoogle Scholar
  5. ALLAN, R.D., EVANS, R.H. & JOHNSTON, G.A.R. (1980). γ-Aminobutyric acid agonists: An in vitro comparison between depression of spinal synaptic activity and depolarization of spinal root fibres in the rat. Br. J. Pharmac., 70, 609–615.Google Scholar
  6. ANDERSEN, P., DINGLEDINE, R., GJERSTAD, L., LANGMOEN, I.A. & MOSFELDT-LAURSEN, A. (1980). Two different responses of hippocampal pyramidal cells to application of gamma-aminobutyric acid. J. Physiol., 305, 279–296.Google Scholar
  7. ANDERSEN, P., ECCLES, J.C. & LØYNING, Y. (1964). Location of post-synaptic inhibitory synapses on hippocampal pyramids. J. Neurophysiol., 27, 592–607.Google Scholar
  8. BARKER, J.L., McBURNEY, R.N. & MacDONALD, J.R. (1982). Fluctuation analysis of neutral amino acid responses in cultured mouse spinal neurones. J. Physiol., 322, 365–388.Google Scholar
  9. BLAXTER, T.J. & COTTRELL, G.A. (1982). Responses of rat hippocampal pyramidal cells to GABA and ethylene diamine. J. Physiol., 330, 46P.Google Scholar
  10. BORMANN, J., SAKMANN, B. & SEIFERT, W. (1983). Isolation of GABA-activated single-channel Cl currents in the soma membrane of rat hippocampal neurones. J. Physiol., 341, 9P.Google Scholar
  11. BOWERY, N.G. (1982). Baclofen: 10 years on. Trends in Pharmac. Sci., 3, 400–403.Google Scholar
  12. CONNORS, B.W., GUTNICK, M.J. & PRINCE, D.A. (1982). Electrophysiological properties of neocortical neurons in vitro. J. Neurophysiol., 48, 1302–1320.Google Scholar
  13. CONSTANTI, A., CONNOR, J.D., GALVAN, M. & NISTRI, A. (1980). Intra-cellularly-recorded effects of glutamate and aspartate on neurones in the guinea-pig olfactory cortex slice. Brain Res., 195, 403–420.Google Scholar
  14. FUGITA, Y. (1979). Evidence for the existence of inhibitory post-synaptic potentials in dendrites and their functional significance in hippocampal pyramidal cells of adult rabbits. Brain Res., 175, 59–69.Google Scholar
  15. HAMILL, O.P., BORMANN, J. & SAKMANN, B. (1983). Activation of multiple-conductance state chloride channels in spinal neurones by glycine and GABA. Nature, 305, 805–808.Google Scholar
  16. HOTSON, J.R. & PRINCE, D.A. (1980). A calcium-activated hyperpolarization follows repetitive firing in hippocampal neurones. J. Neurophysiol., 43, 409–419.Google Scholar
  17. JAHNSEN, H. & MOSFELDT LAURSEN, A.M. (1981). The effects of a benzodiazepine on the hyperpolarizing and depolarizing responses of hippocampal cells to GABA. Brain Res., 207, 214–217.Google Scholar
  18. JAHR, C.E. & NICOLL, R.A. (1982). An intracellular analysis of dendrodendritic inhibition in the turtle in vitro olfactory bulb. J. Physiol., 326, 213–234.Google Scholar
  19. KANDEL, E.R., SPENCER, S.A. & BRINLEY, F.J. (1961). Electrophysiology of hippocampal neurons. I. Sequential invasion and synaptic organization. J. Neurophysiol., 24, 225–242.Google Scholar
  20. LANCASTER, B. & WHEAL, H.V. (1983). Ca2+ dependence of afterhyperpolarizations (AHPs) in CA1 pyramidal cells of the rat. J. Physiol., 334, 118P.Google Scholar
  21. MORI, K., NOWYCKY, M.C. & SHEPHERD, G.M. (1981). Analysis of synaptic potentials in mitral cells in the isolated turtle olfactory bulb. J. Physiol., 314, 295–309.Google Scholar
  22. NEWBERRY, N.R. & NICOLL, R.A. (1984a). A bicucullineresistant inhibitory postsynaptic potential in rat hippocampal pyramidal cells in vitro. J. Physiol., 348, 239, 254.Google Scholar
  23. NEWBERRY, N.R. & NICOLL, R.A. (1984b). Baclofen directly hyperpolarizes hippocampal pyramidal cells. Nature, 308, 450–452.Google Scholar
  24. NEWBERRY, N.R. & NICOLL, R.A. (1984c). Similarities between the actions of baclofen and the slow i.p.s.p. transmitter in rat hippocampal pyramidal cells in vitro. J. Physiol (in press).Google Scholar
  25. NICOLL, R.A. & ALGER, B.E. (1981). Synaptic excitation may activate a calcium-dependent potassium conductance in hippocampal pyramidal cells. Science, 212, 957–959.Google Scholar
  26. SATOU, M., MORI, K., TAZAWA, Y. & TAKAGI, S. (1982). Two types of postsynaptic inhibition in pyriform cortex of the rabbit: fast and slow inhibitory postsynaptic potentials. J. Neurophysiol., 48, 1142–1156.Google Scholar
  27. SOMOGYI, P., SMITH, A.D., NUNZI, M.G., GORIO, A., TAKAGI, H. & WU, J.Y. (1983). Glutamate decarboxylase immuno-reactivity in the hippocampus of the cat: distribution of immunoreactive synaptic terminals with special reference to the axon initial segment of pyramidal neurons. J. Neurosci., 3, 1450–1468.Google Scholar
  28. STORM-MATHISEN, J. (1977). Localization of transmitter candidates in the brain: the hippocampal formation as a model. Prog. Neurobiol., 8, 119–181.Google Scholar
  29. THALMANN, R.H. (1984). Reversal properties of an EGTA-resistant late hyperpolarization that follow synaptic stimulus of hippocampal neurones. Neurosci. Lea., 46, 103–105.CrossRefGoogle Scholar
  30. THALMANN, R.H. & AYALA. (1982). A late increase in potassium conductance follows synaptic stimulation of granule neurons of the dentate gyrus. Neurosci. Lett., 29, 243–248.PubMedCrossRefGoogle Scholar
  31. THALMANN, R.H., PECK, E.J. & AYALA, G.F. (1981). Biphasic response of hippocampal pyramidal neurons to GABA. Neurosci. Lett., 21, 319–324.PubMedCrossRefGoogle Scholar
  32. WONG, R.K.S & WATKINS, K.J. (1982). Cellular factors influencing GABA response in hippocampal pyramidal cells. J. Neurophysiol., 48, 938–951.PubMedGoogle Scholar

Copyright information

© Macmillan Publishers Limited 1984

Authors and Affiliations

  • R. A. Nicoll
    • 1
  • N. R. Newberry
    • 1
  1. 1.Departments of Pharmacology and of PhysiologyUniversity of CaliforniaSan FranciscoUSA

Personalised recommendations