Regulation of 5-hydroxytryptamine (5HT) uptake: endocoid modulators and the action of imipramine

  • E. Costa
  • M. L. Barbaccia

Abstract

The monoamine hypothesis of affective disorders (Schildkraut, 1965; Van Praag, 1978) was initiated and fostered by extrapolation from animal experimentation (Brodie et al., 1956; Brodie & Shore, 1957; Costa et al., 1960). It is surprising how the doctrinality of this hypothesis has promoted the popularity of this theory despite the fact that no one has ever succeeded in providing convincing evidence that an altered amine metabolism is present in manic depressive illness. Though many antidepressants, both tricyclic and monoamine oxidase inhibitors potentiate the action of biogenic amines in the CNS by blocking one of the two major pathways for monoamine inactivation (Carlsson et al., 1959; Quitkin et al., 1979) there are a number of antidepressants (Leonard, 1982; Sulser, 1982), which do not potentiate the central effects of biogenic amines. Moreover, there are potent inhibitors of catecholamine uptake (Post et al., 1979) which are poor anti-depressants.

Keywords

Depression Attenuation Serotonin Cocaine Histamine 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. BARBACCIA, M.L., BRUNELLO, N., CHUANG, D.-M. & COSTA, E. (1983a). On the mode of action of imipramine: relationship between serotonergic axon terminal function and down regulation of β-adrenergic receptors. Neuropharmacology, 22, 373–383.PubMedCrossRefGoogle Scholar
  2. BARBACCIA, M.L. & COSTA, E. (1984). Autacoids from drug receptors: a new approach in drug development. Ann. N.Y. Acad. Sci. (in press).Google Scholar
  3. BARBACCIA, M.L., CHUANG, D.-M., GANDOLFI, O. & COSTA, E. (1983b). Trans-synaptic mechanisms in the action of imipramine. In Frontiers in Neuropsychiatric Research. Usdin, E., Goldstein, M., Friedhoff, A.J. & Georgotas, A. (eds) pp. 19–31, London: Macmillan Press.Google Scholar
  4. BARBACCIA, M.L., GANDOLFI, O., CHUANG, D.-M. & COSTA, E. (1983c). Differences in the regulatory adaptation of the 5HT2 recognition sites labelled by 3H-mianserin or 3H-ketanserin. Neuropharmacology, 22, 123–126.Google Scholar
  5. BARBACCIA, M.L., GANDOLFI, O., CHUANG, D.-M. & COSTA, E. (1983d). Modulation of neuronal serotonin uptake by a putative endogenous ligand of imipramine recognition sites. Proc. natn. Acad. Sci. U.S.A., 80, 5134–5138.Google Scholar
  6. BAUMANN, P.A. & MAITRE, L. (1977). Blockade of presynaptic α-receptors and of amine uptake in the rat brain by the antidepressant mianserin. Naunyn Schmiedebergs Arch. Phanmac., 300, 31–37.Google Scholar
  7. BRODIE, B.B., PLETSCHER, A. & SHORE, P.A. (1956). Serotonin releasing activity limited to Ramcolfia Alkaloids with tranquilizing action. Science, 123, 992.Google Scholar
  8. BRODIE, B.B. & SHORE, P.A. (1957). A concept for a role of serotonin and norepinephrine as chemical mediators in the brain. Ann. N.Y. Acad. Sci., 66, 631–642.Google Scholar
  9. BRUNELLO, N., BARBACCIA, M.L., CHUANG, D.-M. & COSTA, E. (1982a). Down regulation of β-adrenergic receptors following repeated desmethylimipramine injections: permissive role of serotonergic axons. Neuropharmacology, 21, 1145–1149.Google Scholar
  10. BRUNELLO, N., CHUANG, D.-M. & COSTA, E. (1982b). Specific binding of 3H-mianserin and 3H-imipramine to structures of rat hippocampus. Eur. J. Pharmac., 78, 383–384.Google Scholar
  11. BRUNELLO, N., CHUANG, D.-M. & COSTA, E. (1982c). Different synaptic location of mianserin and imipramine binding sites. Science, 215, 1112–1115.Google Scholar
  12. BRUNELLO, N., CHUANG, D.-M. & COSTA, E. (1982d). Use of specific brain lesions to study the site of action of antidepressants. In Advances in Biosciences 48: Langer, S.Z. & Briley, M.J. (eds) pp. 141–145, Oxford: Pergamon Press.Google Scholar
  13. CARLSSON, A., JOANSON, J., LINDQVIST, M. & FUXE, M. (1959). Demonstration of extraneuronal 5-hydroxytryptamine accumulation in brain following membrane pump blockade by chlorimipramine. Brain Res., 12, 4566.Google Scholar
  14. COSTA, E., GARATTINI, S. & VALZELLI, L. (1960). Interactions between reserpine, imipramine and chlorpromazine. Experientia, 16, 461–467.Google Scholar
  15. DE MONTIGNY, C. & AGHAJANIAN, G.K. (1978). Tricyclic antidepressants: long term treatment increases responsivity of rat forebrain neurons to serotonin. Science, 202, 1303–1306.Google Scholar
  16. FORCHETTI, C.M. & MEEK, J.L. (1981). Evidence for a tonic GABAergic control of serotonergic neurons in the median raphé nucleus. Brain Research, 206, 208–212.Google Scholar
  17. GANDOLFI, O., BARBACCIA, M.L. & COSTA, E. (1984). Comparison of iprindole, imipramine and mianserin action on brain serotonergic and β-adrenergic receptors. J. Pharmac. exp. Ther., 229, 782–786.Google Scholar
  18. GROSS, G., GOTHERT, M., ENDER, M.-P. & SCHUMANN, H.-J. (1981). 3H-imipramine binding sites in the rat brain: selective localization on serotonergic neurons. Naunyn Schmiedebergs Arch. Pharmac., 317, 310–314.Google Scholar
  19. JANOWSKI, A., OKADA, F., MANIER, D.H., APPLEGATE, C.D., SULSER, F. & STERAUKA, A. (1982). Role of serotonergic input in the regulation of the β-adrenergic receptor-coupled adenylate cyclase system. Science, 218, 900–901.Google Scholar
  20. LANGER, S.Z., MORET, C., RAISMAN, R., DUBOCOVICH, M.L. & BRILEY, M. (1980). High affinity 3H-imipramine binding in rat hypothalamus: association with uptake of serotonin but not of norepinephrine. Science, 210, 1133–1135.Google Scholar
  21. LEONARD, B.E. (1982). On the mode of action of mianserin. In Typical and atyptical antidepressants: molecular mechanisms. Costa, E. & Racagni, G. (eds) pp. 301–319, New York: Raven Press.Google Scholar
  22. MEDICAL RESEARCH COUNCIL (1965). Br. med. J., 1, 861–886.Google Scholar
  23. PEROUTKA, S.J. & SNYDER, S.H. (1980). Long-term antidepressant treatment decreases spiroperidol labelled serotonin receptor binding. Science, 210, 88–90.Google Scholar
  24. PEROUTKA, S.J. & SNYDER, S.H. (1981). 3H-mianserin: differential labelling of serotonin and histamine receptors in rat brain. J. Pharmac. exp. Ther., 216, 142–148.Google Scholar
  25. POST, R.M., KOTIN, J. & GOODWIN, F.K. (1979). The effect of cocaine on depressed patients. Am. J. Psychiatry, 131, 511–517.Google Scholar
  26. QUITKIN, F., RIGKIN, A. & KLEIN, D.F. (1979). Monoamine oxidase inhibitors: a review of antidepressant effectiveness. Arch. Gen. Psychiatry, 36, 749–760.Google Scholar
  27. RAISMAN, R., BRILEY, M.S. & LANGER, S.Z. (1979). Specific tricyclic antidepressant binding sites in rat brain. Nature, 281, 148–149.Google Scholar
  28. SCHILDKRAUT, J.J. (1965). The catecholamine hypothesis of affective disorders: a review of supporting evidence. Am. J. Psychiat., 122, 509–522.PubMedCrossRefGoogle Scholar
  29. SETTE, M., RAISMAN, R., BRILEY, M. & LANGER, S.Z. (1981). Localization of tricyclic antidepressant binding sites on serotonin nerve terminals. J. Neurochem., 37, 40–42.Google Scholar
  30. SULSER, F. (1982). Antidepressant drug research: its impact on neurobiology and psychobiology. In Typical and atypical antidepressants: molecular mechanisms. Costa, E. & Racagni, G. (eds) pp. 1–20, New York: Raven Press.Google Scholar
  31. SUZDAK & GIANUTSOS, G. (1984). Parallel changes in GABAergic and noradrenergic receptor sensitivity following chronic administration of antidepressant and GABAergic drugs: a possible role in affective disorders. Neuropharmacology, 23 (in press).Google Scholar
  32. TANG, S.W. & SEEMAN, P. (1980). Effect of antidepressant drugs on serotonergic and adrenergic receptors. Naunyn Schmiedebergs Arch. Pharmac., 311, 255–261.Google Scholar
  33. TURMEL, A. & DE MONTIGNY, C. (1983). Sensitization of rat forebrain neurons to serotonin by adinasolam, an antidepressant triazolobenzodiazepine. Eur. J. Pharmac., 99, 241–244.Google Scholar
  34. VAN PRAAG, H.M. (1978). Amine hypothesis of affective disorders. In Handbook of Psychopharmacology. Iversen, L.L., Iversen, S.D. & Snyder, S.H. (eds) pp. 187–297, New York: Plenum Press.CrossRefGoogle Scholar
  35. ZSILLA, G., BARBACCIA, M.L., GANDOLFI, O., KNOLL, J. & COSTA, B. (1983). (—)-deprenyl a selective MAO ‘B’ inhibitor increases 3H-imipramine binding and decreases β-adrenergic receptor function. Eur. J. Pharmac., 89, 111–117.CrossRefGoogle Scholar

Copyright information

© Macmillan Publishers Limited 1984

Authors and Affiliations

  • E. Costa
    • 1
  • M. L. Barbaccia
    • 1
  1. 1.Laboratory of Preclinical PharmacologyNIMH, Saint Elizabeths HospitalWashington, D.CUSA

Personalised recommendations