Molecular pharmacology of the sodium channel of mammalian brain

  • W. A. Catterall
  • D. J. Messner
  • R. P. Hartshorne
  • D. J. Feller
  • J. A. Talvenheimo
  • B. Keller
  • M. Montal

Abstract

The ionic mechanisms underlying electrical excitability in nerve and other excitable tissues have been defined by use of the voltage clamp method (Hodgkin & Huxley, 1952). In this approach the voltage across the excitable membrane is controlled with a feedback amplifier circuit and the ionic currents moving across the membrane in response to step changes in the membrane potential imposed by the experimenter are measured. Experiments with the voltage clamp technique have shown that the initial rapid depolarization during an action potential in nerve axons and most other excitable tissues results from rapid voltage-dependent increases in membrane permeability to sodium ions (Hodgkin & Huxley, 1952; Hille, 1976). Many different lines of evidence indicate that a selective transmembrane sodium channel is responsible for the rapid sodium permeability increase during the action potential. Selective ion permeation is mediated by a hydrophilic pore containing a sodium-selective ion coordination site designated the ion selectivity filter (Hille, 1972).

Keywords

Polypeptide Alkaloid Choline Lidocaine Neuroblastoma 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. AGNEW, W.S. & RAFTERY, M.A. (1979). Solubilized tetrodotoxin binding component from the electroplax of Electrophorus electricus. Stability as a function of mixed lipid-detergent micelle composition. Biochemistry, 18, 1912–1919.Google Scholar
  2. ALBUQUERQUE, E.X. & DALY, J.W. (1976). Batrachotoxin, a selective probe for channels modulating sodium conductances in electrogenic membranes. In The Specificity and Action of Animal, Bacterial and Plant Toxins. Cuatrecasas, P. (ed.) pp. 299–338, London: Chapman & Hall.Google Scholar
  3. ALDRICH, R.W., COREY, D.P. & STEVENS, C.F. (1983). A reinterpretation of mammalian sodium channel gating based on single channel recording. Nature, 306, 436–441.Google Scholar
  4. ARMSTRONG, C.M. & BEZANILLA, F. (1974). Charge movement associated with the opening and closing of the activation gates of the Na channel. J. Gen. Physiol., 63, 533–552.Google Scholar
  5. ARMSTRONG, C.M. & BEZANILLA, F. (1977). Inactivation of the sodium channel: Gating current experiments. J. Gen. Physiol., 70, 567–590.Google Scholar
  6. BALDINO, F. Jr & GELLER, H.M. (1981). Sodium valproate enhancement of γ-aminobutyric acid (GABA) inhibition: Electrophysiological evidence for anticonvulsant activity. J. Pharmac. exp. Ther., 217, 445–450.Google Scholar
  7. BARHANIN, J., GIGLIO, J.R., LEOPOLD, P., SCHMID, A., SAMPAIO, S.V. & LAZDUNSKI, M. (1982) Tityus serrulatus venom contains two classes of toxins: Tityus γ toxin is a new tool with a very high affinity for studying the Na+ channel. J. biol. Chem., 257, 13553–13558.Google Scholar
  8. BENESKI, D.A. & CATTERALL, W.A. (1980). Covalent labeling of protein components of the sodium channel with a photoactivable derivative of scorpion toxin. Proc. natn. Acad. Sci. U.S.A., 77, 639–643.Google Scholar
  9. BROWN, G.B., TIESZEN, DALY, J.W., WARNICK, J.E. & ALBUQUERQUE, E.X. (1981). Batrachotoxinin-A 20-α -benzoate: A new radioactive ligand for voltage sensitive sodium channels. Cell Mol. Neur., 1, 19–40.Google Scholar
  10. CAHALAN, M.D. (1975). Modification of sodium channel gating in frog myelinated nerve fibres by Centruroides sculturatus scorpion venom. J. Physiol., 244, 511–534.PubMedPubMedCentralCrossRefGoogle Scholar
  11. CATTERALL, W.A. (1977). Membrane potential-dependent binding of scorpion toxin to the action potential Na+ ionophore. J. biol. Chem., 252, 8660–8668.PubMedGoogle Scholar
  12. CATTERALL, W.A. (1979). Binding of scorpion toxin to receptor sites associated with sodium channels in frog muscle. J. Gen. Physiol., 74, 375–391.PubMedCrossRefGoogle Scholar
  13. CATTERRALL, W.A. (1980). Neurotoxins that act on voltage-sensitive sodium channels in excitable membranes. A. Rev. pharmac. Toxicol., 20, 15–43.CrossRefGoogle Scholar
  14. CATTERALL, W.A. (1981). Inhibition of voltage-sensitiveGoogle Scholar
  15. sodium channels in neuroblastoma cells by antiarrhythmic drugs. Mol. Pharmac., 20, 356–362.Google Scholar
  16. CATTERALL, W.A., MORROW, C.S. & HARTSHORNE, R.P. (1979). Neurotoxin binding to receptor sites associated with voltage-sensitive sodium channels in intact, lysed, and detergent-solubilized brain membranes. J. biol. Chem., 254, 11379–11387.Google Scholar
  17. CATTERALL, W.A., MORROW, C.S., DALY, J.W. & BROWN, G.B. (1981). Binding of batrachotoxinin A 20α-benzoate to a receptor site associated with sodium channels in synaptic nerve ending particles. J. biol. Chem., 256, 8922–8927.Google Scholar
  18. CHOI, D.W., FARB, D.H. & FISCHBACH, G.D. (1977). Chlordiazepoxide selectively augments GABA action in spinal cord cell cultures. Nature, 269, 342–344.Google Scholar
  19. CONNORS, B.W. (1981). A comparison of the effects of pentobarbital and diphenylhydantoin on the GABA sensitivity and excitability of adult sensory ganglion cells. Brain Res., 207, 357–369.PubMedCrossRefGoogle Scholar
  20. CONTI, F., HILLE, B., NEUMCKE, B., NONNER, W. & STAMPFLI, R. (1976). Conductance of the sodium channel in myelinated nerve fibres with modified sodium inactivation. J. Physiol., 262, 729–742.Google Scholar
  21. COURAUD, F., JOVER, E., DUBOIS, J.M. & ROCHAT, H. (1982). Two types of scorpion toxin receptor sites, one related to the activation, the other to the inactivation of the action potential sodium channel. Toxicology, 20, 9–16.Google Scholar
  22. COURTNEY, K.R. (1975). Mechanism of frequency-dependent inhibition of sodium currents in frog myelinated nerve by the lidocaine derivative GEA 968. J. Pharmac. exp. Ther., 195, 225–236.Google Scholar
  23. CREVELING, C.R., McNEAL, E.T., DALY, J.W. & BROWN, G.B. (1983). Batrachotoxin-induced depolarization and [3H]batrachotoxinin-A 20-α-benzoate binding in a vesicular preparation from guinea pig cerebral cortex: Inhibition by local anesthetics. Mol. Pharmac., 23, 350–358.Google Scholar
  24. CRILL, W.E. (1980). Neuronal mechanisms of seizure initiation in antiepileptic drugs: Mechanisms of action. Glaser, G.H., Penry, J.K., Woodbury, D.M. (eds) pp. 169–183. New York: Raven Press.Google Scholar
  25. DARBON, H., JOVER, E., COURAUD, F. & ROCHAT, H. (1983). Photoaffinity labeling of α- and β-scorpion toxin receptors associated with rat brain sodium channel. Biochem. biophys. Res. Commun., 115, 415–422.Google Scholar
  26. DEVRIES, G.H. & LAZDUNSKI, M. (1982). The binding of two classes of neurotoxins to axolemma of mammalian brain. J. biol. Chem., 257, 11684–11688.Google Scholar
  27. FELLER, D.J., TALVENHEIMO, J.A. & CATTERALL, W.A. (1984). Restoration of voltage-dependent changes of state in the purified sodium channel. Proc. natn. Acad. Sci. U.S.A., (in press).Google Scholar
  28. HAMILL, O.P., MARTY, A., NEHER, E., SAKMANN, B. &Google Scholar
  29. SIGWORTH, F.J. (1981). Improved patch-clamp techniques for high-resolution recording from cells and cell-free membrane patches. Pflügers Arch., 391, 85–100.PubMedCrossRefGoogle Scholar
  30. HARTSHORNE, R.P., COPPERSMITH, J. & CATTERALL, W.A. (1980). Size characteristics of the solubilized saxitoxin receptor of the voltage-sensitive sodium channel from rat brain. J. biol. Chem., 255, 10572–10575.Google Scholar
  31. HARTSHORNE, R.P. & CATTERALL, W.A. (1981). Purification of the saxitoxin receptor of the sodium channel from rat brain. Proc. natn. Acad. Sci. U.S.A., 78, 4620–4624.Google Scholar
  32. HARTSHORNE, R.P., MESSNER, D.J., COPPERSMITH, J.C. & CATTERALL, W.A. (1982). The saxitoxin receptor channel from rat brain: Evidence for two nonidentical β subunits. J. biol. Chem., 257, 13888–12891.Google Scholar
  33. HARTSHORNE, R., KELLER, B., TALVENHEIMO, J., CATTERALL, W. & MONTAL, M. (1984). Functional reconstruction of the purified brain sodium channel in planar lipid bilayers. Neurosci. Abs. (in press).Google Scholar
  34. HILLE, B. (1975). Ionic selectivity, saturation, and block in sodium channels: A four-barrier model. J. Gen. Physiol., 66, 535–560.PubMedCrossRefGoogle Scholar
  35. HILLE, B. (1976). Gating in sodium channels of nerve. A. Rev. Physiol., 38, 139–152.CrossRefGoogle Scholar
  36. HILLE, B. (1977). Local anesthetics: Hydrophilic and hydrophobic pathways for the drug-receptor reaction. J. Gen. Physiol., 69, 497–515.PubMedCrossRefGoogle Scholar
  37. HODGKIN, A.L. & HUXLEY, A.F. (1952). A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol., 117, 500–544.Google Scholar
  38. HONDEHEGM, L.M. & KATZUNG, B.G. (1984). Anti-arrhythmic agents: The modulated receptor mechanism of action of sodium and calcium channel-blocking drugs. A. Rev. pharmac. Toxicol., 24, 387–423.Google Scholar
  39. JOVER, E., COURAUD, F. & ROCHAT, H. (1980). Two types of scorpion neurotoxins characterized by their binding to two separate receptor sites on rat brain synaptosomes. Biochem. biophys. Res. Commun., 95, 1607–1614.Google Scholar
  40. KRUEGER, B.K., RATZLAFF, R.W., STRICHARTZ, G.R. & BLAUSTEIN, M.P. (1979). Saxitoxin binding to synaptosomes, membranes, and solubilized binding sites from rat brain. J. Membr. Biol., 50, 287–310.Google Scholar
  41. KRUEGER, B.K., BLAUSTEIN, M.P. & RATZLAFF, R.W. (1980). Sodium channels in presynaptic nerve terminals. J. Gen. Physiol., 76, 287–313.Google Scholar
  42. KRUEGER, B.K., WORLEY, III, J.F. & FRENCH, R.J. (1983). Single sodium channels from rat brain incorporated into planar lipid bilayer membranes. Nature, 303, 172–175.Google Scholar
  43. LAZDUNSKI, M. & RENAUD, J.F. (1982). The action of cardiotoxins on cardiac plasma membranes. A. Rev. Physiol., 44, 463–473.Google Scholar
  44. LIPICKY, R.J., GILBERT, D.L. & STILLMAN, I.M. (1972). Diphenylhydantoin inhibition of sodium conductance in squid giant axon. Proc. natn. Acad. Sci. U.S.A., 69, 1758–1760.Google Scholar
  45. MACDONALD, R.L. & BARKER, J.L. (1978). Benzodiazepines specifically modulate GABA-mediated postsynaptic inhibition in cultured mammalian neurones. Nature, 271, 563–564.Google Scholar
  46. MACDONALD, R.L. & BARKER, J.L. (1979). Enhancement of GABA-mediated postsynaptic inhibition in cultured mammalian spinal cord neurons: A common mode of anticonvulsant action. Brain Res., 167, 323–336.Google Scholar
  47. McLEAN, M.J. & MACDONALD, R.L. (1983). MultipleGoogle Scholar
  48. actions of phenytoin on mouse spinal cord neurons in cell culture. J. Pharmac. exp. Ther., 227, 779–789.Google Scholar
  49. MESSNER, D.J. & CATTERALL, W.A. (1984). Separation and characterization of the subunits of the sodium channel. Biochemistry (in press).Google Scholar
  50. MEVES, H., RUBLY, N. & WATT, D.D. (1982). Effect of toxins isolated from the venom of the scorpion Centruroides sculpturatus on the Na currents of the node of Ranvier. Pflügers Arch., 393, 56–62.Google Scholar
  51. MONTAL, M. (1974). Formation of bimolecular membranes from lipid monolayers Methods Enzymol., 32, 545–554.PubMedCrossRefGoogle Scholar
  52. MOZHAYEVA, G.N., NAUMOV, A.P., NOSYREVA, E.D. & GRISHIN, E.V. (1980). Potential-dependent interaction of toxin from venom of the scorpion buthus eupeus with sodium channels in myelinated fibre. Biochim. biophys. Acta., 597, 587–602.Google Scholar
  53. NARAHASHI, T. (1974). Chemicals as tools in the study of excitable membranes. Physiol. Rev., 54, 813–889.PubMedGoogle Scholar
  54. POSTMA, S.W. & CATTERALL, W.A. (1983). Inhibition of binding of [3H]batrachotoxinin A 20-α-benzoate to sodium channels by local anesthetics. Mol. Pharmac., 25, 219–227.Google Scholar
  55. QUANDT, F.N. & NARAHASHI, T. (1982). Modification of single Na+ channels by batrachotoxin. Proc. natn. Acad. Sci. U.S.A., 79, 6732–6736.Google Scholar
  56. RAY, R., MORROW, C..S. & CATTERALL, W.A. (1978). Binding of scorpion toxin to receptor sites associated with voltage-sensitive sodium channels in synaptic nerve ending particles. J. biol. Chem., 253, 7307–7313.Google Scholar
  57. RITCHIE, J.M. & ROGART, R.B. (1977). The binding of saxitoxin and tetrodotoxin to excitable tissue. Rev. Physiol. biochem. Pharmac., 79, 1–50.Google Scholar
  58. SCHAUF, C.L., DAVIS, F.A. & MARDER, J. (1974). Effects of carbamazepine on ionic conductances of Myzicola giant axons. J. Pharmac. exp. Ther., 538–543.Google Scholar
  59. SCHWARZ, J.R. & VOGEL, W. (1977). Diphenylhydantoin: Excitability reducing action in single myelinated nerve fibres. Eur. J. Pharmac., 44, 241–249.Google Scholar
  60. SIGWORTH, F.J. (1980). The conductance of sodium channels under conditions of reduced current at the node of Ranvier. J. Physiol., 307, 131–142.PubMedPubMedCentralCrossRefGoogle Scholar
  61. SIGWORTH, F.J. & NEHER, E. (1980). Single Na+ channel currents observed in cultured rat muscle cells. Nature, 287, 447–449.Google Scholar
  62. STRICHARTZ, G.R. (1973). The inhibition of sodium currents in myelinated nerve by quarternary derivatives of lidocaine. J. Gen. Phsiol., 62, 37–57.CrossRefGoogle Scholar
  63. STRICHARTZ, G. (1976). Molecular mechanisms of nerve block by local anesthetics. Anaesthesiology, 45, 421–441.CrossRefGoogle Scholar
  64. TAMKUN, M.M. & CATTERALL, W.A. (1980). Ion flux studies of voltage-sensitive sodium channels in synaptic nerve-ending particles. Mol. Pharmac., 19, 78–86.Google Scholar
  65. TAMKUN, M.M., TALVENHEIMO, J.A. & CATTERALL, W.A. (1984). The sodium channel from rat brain: Reconstitution of neurotoxin-activated ion flux and scorpion toxin binding from purified components. J. biol. Chem., 259, 1676–1688.Google Scholar
  66. TALVENHEIMO, J.A., TAMKUN, M.M. & CATTERALL, W.A. (1982). Reconstitution of neurotoxin-stimulated sodium transport by the voltage-sensitive sodium channel purified from rat brain. J. biol. Chem., 257, 11868–11871.Google Scholar
  67. WANG, G.K. & STRICHARTZ, G. (1982). SimultaneousGoogle Scholar
  68. modifications of sodium channel gating by two scorpion toxins. Biophys. J., 40, 175–179.Google Scholar
  69. WEIGELE, J.B. & BARCHI, R.L. (1978). Analysis of saxitone binding in isolated rat synaptosomes using a rapid filtration assay. FEBS Lett.. 91. 310–314.Google Scholar
  70. WILLOW, M. & CATTERALL, W.A. (1982). Inhibition of binding of [3H]batrachotoxinin A 20-α-benzoate to sodium channels by the anticonvulsant drugs diphenylhydantoin and carbamazepine. Mol. Pharmac., 22, 627–635.Google Scholar
  71. WILLOW, M., KUENZEL, E.A. & CATTERALL, W.A. (1983). Inhibition of voltage-sensitive sodium channels in neuroblastoma cells and synaptosomes by the anticonvulsant drugs diphenylhydatoin and carbamazepine. Mol. Pharmac., 25, 228–234.Google Scholar
  72. YEH, J.Z. (1980). Blockage of sodium channels by stereoisomers of local anesthetics. In Molecular Mechanisms of Anesthesia-Progress in Anesthesiology. Fink, B.R. (ed.) 2, 35–34, New York: Raven Press.Google Scholar

Copyright information

© Macmillan Publishers Limited 1984

Authors and Affiliations

  • W. A. Catterall
    • 1
  • D. J. Messner
    • 1
  • R. P. Hartshorne
    • 1
    • 2
  • D. J. Feller
    • 1
  • J. A. Talvenheimo
    • 1
  • B. Keller
    • 2
  • M. Montal
    • 2
  1. 1.Department of PharmacologyUniversity of WashingtonSeattleUSA
  2. 2.Departments of Physics and BiologyUniversity of California at San DiegoLa JollaUSA

Personalised recommendations