Advertisement

The relative importance of inositol 1,4,5-trisphosphate, 1,2-diacylglycerol and phosphatidic acid in mediating human platelet activation by thrombin

  • E. G. Lapetina
  • S. P. Watson

Abstract

Thrombin-induced platelet activation can be correlated with formation of three potential bioactive agents (i.e. , second messengers), namely, inositol 1,4,5-trisphosphate, 1,2-diacylglycerol and phosphatidic acid. The present article reviews the relative importance of these three second messengers. It is suggested that both 1,2-diacylglycerol and phosphatidic acid may be of importance in activating protein kinase C in platelets, and that inositol 1,4,5-trisphosphate and possibly lysophosphatidic acid, may be of importance in mobilizing Ca++. It is concluded that thrombin-induced platelet activation occurs through the synergistic interaction of Ca++ and protein kinase C activation.

Keywords

Human Platelet Phosphatidic Acid Pancreatic Acinar Cell Lysophosphatidic Acid Release Reaction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. AGRANOFF, B.W., MURTHY, P. & SEGUIN, E.B. (1983). Thrombin-induced phosphodiesteratic cleavage of phosphatidylinositol bisphosphate in human platelets. J. biol. Chem., 258, 2076–2078.PubMedGoogle Scholar
  2. BENTON, A.M., GERRARD, J.M., MICHIEL, T. & KINDOM, S.E. (1982). Are lysophosphatidic acids or phosphatidic acids involved in stimulus activation coupling in platelets? Blood, 60, 642–649.PubMedGoogle Scholar
  3. BILLAH, M.M. & LAPETINA, E.G. (1982). Rapid decrease of phosphatidylinositol 4,5-bisphosphate in thrombin-stimulated platelets. J. biol. Chem., 257, 12705–12708.PubMedGoogle Scholar
  4. BILLAH, M.M., LAPETINA, E.G. & CUATRECASAS, P. (1979). Phosphatidylinositol-specific phospholipase-C of platelets: association with 1,2-diacylglycerol-kinase and inhibition by cyclic-AMP. Biochem. Biophys. Res. Commun., 90, 92–98.PubMedCrossRefGoogle Scholar
  5. DOWNES, C.P., MUSSAT, M.C. & MICHELL, R.H. (1982). The inositol trisphosphate phosphomonoesterase of the human erythrocyte membrane. Biochem. J., 203, 169–177.PubMedPubMedCentralCrossRefGoogle Scholar
  6. GERRARD, J.M., BUTLER, A.M., PETERSON, D.A. & WHITE, J.G. (1978). Phosphatidic acid releases calcium from a platelet membrane fraction in vitro. Prostaglandins Med., 1, 387–396.PubMedCrossRefGoogle Scholar
  7. JOSEPH, S.K., THOMAS, A.P., WILLIAMS, R.J., IRVINE, R.F. & WILLIAMSON, J.R. (1984). Myo-inositol 1,4,5-triphosphate: a second messenger for the hormonal mobilization of intracellular CaZ+ in liver. J. biol. Chem., 259, 3077–3081.PubMedGoogle Scholar
  8. LAPETINA, E.G. (1982). Regulation of arachidonic acid production: role of phospholipases C and A 2. Trends Pharmac. Sci., 3, 115–118.CrossRefGoogle Scholar
  9. LAPETINA, E.G. (1984). Prostacyclin inhibition of phosphatidic acid synthesis in human platelets is not mediated by protein kinase C. Biochem. Biophys. Res. Communs., 120, 37–44.CrossRefGoogle Scholar
  10. LAPETINA, E.G., BILLAH, M.M. & CUATRECASAS, P. (1981). The phosphatidylinositol cycle and the regulation of arachidonic acid production. Nature, 292, 367–369.PubMedCrossRefGoogle Scholar
  11. LAPETINA, E.G., CHANDRABOSE, K.A. & CUATRECASAS, P. (1978). Ionophore A23187- and thrombin-induced platelet aggregation: independence from cyclooxygenase products. Proc. natn. Acad. Sci. U.S.A., 75, 818–822.CrossRefGoogle Scholar
  12. LAPETINA, E.G. & CUATRECASAS, P. (1979). Stimulation of phosphatidic acid production precedes the formation of arachidonate and parallels the release of serotonin. Biochim. Biophys. Acta., 573, 394–402.PubMedCrossRefGoogle Scholar
  13. LAPETINA, E.G. & SIESS, W. (1983). The role of phospholipase C in platelet responses. Life Sci., 33, 1011–1018.Google Scholar
  14. NISHIZUKA, Y. (1983). Calcium phospholipid turnover and transmembrane signalling. Phil. Trans. R. Soc. Lond. B., 302, 101–112.CrossRefGoogle Scholar
  15. NISHIZUKA, Y. (1984). The role of protein kinase C in cell surface signal transduction and tumor promotion. Nature, 308, 693–698.PubMedCrossRefGoogle Scholar
  16. PUTNEY, J.W. JR., WEISS, S.J., VAN DE WALLE, C.M. & HADDAS, R.A. (1980). Is phosphatidic acid a calcium ionophore under neurohumorol control? Nature, 284, 345–347.PubMedCrossRefGoogle Scholar
  17. PUTNEY, J.W. (1981). Recent hypotheses regarding the phosphatidylinositol effect. Life Sci., 29, 1183–1194.PubMedCrossRefGoogle Scholar
  18. RINK, T. J., SANCHEZ, A. & HALLAM, T.J. (1983). Agonist selectivity and second messenger concentration in Ca++-mediated secretion. Nature, 305, 317–319.PubMedCrossRefGoogle Scholar
  19. RINK, T.J., SMTTH, S.W. & TSIEN, R.Y. (1982). Cytoplasmic free Ca2+ thresholds and Ca-independent activation for shape change and secretion. FEBS Letts., 148, 21–26.CrossRefGoogle Scholar
  20. RITTENHOUSE-SIMMONS, S. (1979). Production of diglyceride from phosphatidylinositol in activated human platelets. J. clin. Invest., 63, 580–587.PubMedPubMedCentralCrossRefGoogle Scholar
  21. RITTENHOUSE, S.E. (1983). Human platelets contain phospholipase C that hydrolyzes polyphosphoinositides. Proc. natn. Acad. Sci. U.S.A., 80, 5417–5420.CrossRefGoogle Scholar
  22. SALMON, D.M. & HONEYMAN, T.W. (1980). Proposed mechanism of cholinergic action in smooth muscle. Nature, 284, 344–345.PubMedCrossRefGoogle Scholar
  23. SANO, K., TAKAI, Y., YAMANSHI, J. & NISHIZUKA, Y. (1983). A role of calcium-activated phospholipiddependent protein kinase in human platelet activation. J. biol. Chem., 258, 2010–2013.PubMedGoogle Scholar
  24. SERHAN, C., ANDERSON, P., GOODMAN, E., DUNHAM, P. & WEISSMANN, G. (1981). Phosphatidate and oxidized fatty acids are calcium ionophores, studies employing arsenazo III in liposomes. J. biol. Chem., 256, 2736–2741.PubMedGoogle Scholar
  25. SIESS, W., CUATRECASAS, P. & LAPETINA, E.G. (1983a). A role for cyclo-oxygenase products in the formation of phosphatidic acid in stimulated human platelets; differential mechanisms of action of thrombin and collagen. J. biol. Chem., 258, 4683–4686.PubMedGoogle Scholar
  26. SIESS, W., SIEGEL, F.L. & LAPETINA, E.G. (1983b). Arachidonic acid stimulates the formation of 1,2-diacylglycerol and phosphatidic acid in human platelets. J. biol. Chem., 258, 11236–11242.PubMedGoogle Scholar
  27. SIESS, W., WEBER, P.C. & LAPETINA, E.G. (1984). Activation of phospholipase C is dissociated from arachidonate metabolism during shape change induced by thrombin or platelet-activating factor; epinephrine does not induce phospholipase C activation or platelet shape change. J. biol. Chem. (in press).Google Scholar
  28. STREB, H., IRVINE, R.F., BERRIDGE, M.J. & SCHULZ, I. (1983). Release of Ca++ from a nonmitochondrial intracellular store in pancreatic acinar cells by inositol-1,4,5-trisphosphate. Nature, 306, 67–69.PubMedCrossRefGoogle Scholar
  29. TOKUMURA, A., FUKUZAWA, K., ISOBE, J. & TSUKATANI, H. (1981). Lysophosphatidic acid-induced aggregation of human and feline platelets: structure-activity relationships. Biochem. Biophys. Res. Commun., 99, 391–398.PubMedCrossRefGoogle Scholar
  30. WATSON, S.P., GANONG, B.R., BELL, R.M. & LAPETINA, E.G. (1984a). 1,2-Diacylglycerols do not potentiate the action of phospholipases A2 and C in human platelets. Biochem. Biophys. Res. Commun., 121, 386–391.PubMedCrossRefGoogle Scholar
  31. WATSON, S.P., McCONNELL, R.T. & LAPETINA, E.G. (1984b). The rapid formation of inositol phosphates in human platelets by thrombin is inhibited by prostacyclin. J. biol. Chem. (in press).Google Scholar

Copyright information

© Macmillan Publishers Limited 1984

Authors and Affiliations

  • E. G. Lapetina
    • 1
  • S. P. Watson
  1. 1.Department of Molecular BiologyThe Wellcome Research LaboratoriesUSA

Personalised recommendations