Skip to main content

Biochemical Events in Dental Plaque

  • Chapter
Dental Caries
  • 245 Accesses

Abstract

The objective of this chapter is to outline the significance of some of the biochemical processes of dental plaque. Energy metabolism is of central importance for bacteria, which are able to use various materials as energy sources, and produce characteristic end-products from them. The impact of these end-products, and also materials produced by extracellular hydrolyses and decarboxylations, are briefly described together with the role of salivary buffers, and the consumption of a strong acid in plaque. Reference is made to the unlikely role of complexing agents in the dissolution of enamel mineral.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Jordan, H. V. (1965). Bacteriological aspects of experimental dental caries. Annals of the New York Academy of Sciences, 131, 905–12

    Article  Google Scholar 

  2. Yamada, T. and Carlsson, J. (1975). Regulation of lactate dehydrogenase and change of fermentation products in streptococci. Journal of Bacteriology, 124, 55–61

    Google Scholar 

  3. Yamada, T. and Carlsson, J. (1975). The role of pyruvate formate lyase in glucose metabolism of Streptococcus mutans, in Microbial Aspects of Dental Caries (Eds Stiles, H. M., Stiles, W. J. and O’Brien, T. C.), Sp. Supp. Microbiology Abstracts, vol. III, pp. 809–19

    Google Scholar 

  4. Ritz, H. L. (1967). Microbial population shifts in developing human dental plaque. Archives of Oral Biology, 12, 1561–8

    Article  Google Scholar 

  5. Michaud, R. N. and Delwiche, E. A. (1970). Multiple impairment of glycolysis in Veillonella alcalescens. Journal of Bacteriology, 101, 138–40

    Google Scholar 

  6. Michaud, R. N., Carrow, J. A. and Delwiche, E. A. (1970). Non-oxidative pentose phosphate pathway in Veillonella alcalescens. Journal of Bacteriology, 101, 141–4

    Google Scholar 

  7. Mikx, F. H. M. and van der Hoeven, J.S. (1975). Symbiosis of Streptococcus mutans and Veillonella alcalescens in mixed continuous cultures. Archives of Oral Biology, 20, 407–10

    Article  Google Scholar 

  8. van der Hoeven, J. S., Toorop, A. I. and Mikx, F. H. M. (1978). Symbiotic relationship of Veillonella alcalescens and Streptococcus mutans in dental plaque in gnotobiotic rats. Caries Research, 12, 142–7

    Article  Google Scholar 

  9. Stephan, RM. (1944). Intra-oral hydrogen-ion concentrations associated with dental caries activity. Journal of Dental Research, 23, 257–66

    Article  Google Scholar 

  10. Geddes, D. A. M. (1975). Acids produced by human dental plaque metabolism in situ. Caries Research, 9, 98–109

    Article  Google Scholar 

  11. Gilmour, M. N., Green, G. C., Zahn, L. M., Sparmann, C. D. and Pearlman, J. (1976). The C1-C, monocarboxylic and lactic acids in dental plaques before and after exposure to sucrose in vivo, in Microbial Aspects of Dental Caries (Eds Stiles, H. M., Loesche, W. J. and O’Brien, T. C.), Sp. Supp. Microbiology Abstracts, vol. II, pp. 539–56

    Google Scholar 

  12. Hayes, M. L. and Hyatt, A. T. (1974). The decarboxylation of amino acids by bacteria derived from human dental plaque. Archives of Oral Biology, 19, 361–9

    Article  Google Scholar 

  13. Cole, M. F., Curtis, M. A. and Bowen, W. H. (1977). Ornithine decarboxylase activity in tooth surface plaque from monkeys (Macaca fascicularis) fed pyridoxine, phytate and invert sugar. Archives of Oral Biology, 22, 503–6

    Article  Google Scholar 

  14. Stephan, R. M. (1943). Effect of urea in counteracting the influence of carbohydrates on the pH of dental plaques. Journal of Dental Research, 22, 63–71

    Article  Google Scholar 

  15. Biswas, S. D. and Kleinberg, I. (1971). Effect of urea concentration on its utilisation, on the pH and the formation of ammonia and carbon dioxide in a human salivary sediment system. Archives of Oral Biology, 16, 759–80

    Article  Google Scholar 

  16. Shannon, I. L., Feller, R. P., Ekhoyan, G. and Suddick, R. P. (1977). Human parotid saliva urea in renal failure and during dialysis. Archives of Oral Biology, 22, 83–6

    Article  Google Scholar 

  17. Renson, C. E. and Mercer, C. E. (1973). The dental needs of a group of haemodialysis and renal transplant patients. Journal of Dental Research, 52, 966

    Google Scholar 

  18. Finn, S. B., Klapper, C. E. and Volker, J. F. (1955). Intra-oral effects upon experimental hamster caries, in Advances in Experimental Caries Research (Ed. Sognnaes, R. F. ), American Association for Advancement of Science, Washington DC, pp. 152–68

    Google Scholar 

  19. Ericsson, Y. (1962). Salivary and food factors in dental caries development. International Dental Journal, 12, 476–95

    Google Scholar 

  20. Lilienthal, B. (1955). An analysis of the buffer system in saliva. Journal of Dental Research, 34, 516–30

    Article  Google Scholar 

  21. Jackson, P. and Armstrong, W. G. (1974). Isolation of a histidine-rich protein from human parotid saliva. Journal of Dental Research, 53, 1050

    Google Scholar 

  22. Holbrook, I. B. and Molan, P. C. (1975). The identification of a peptide in human parotid saliva particularly active in enhancing the glycolytic activity of the salivary microorganisms. Biochemical Journal, 149, 489–92

    Article  Google Scholar 

  23. Sillen, L. G. and Martell, A. E. (1964). Stability constants of metal-ion complexes. Chemical Society Special Publication No. 17, London

    Google Scholar 

  24. Gregory, T. M., Moreno, E. C. and Brown, W. E. (1970). Solubility of CaHPO42H2O in the system Ca(OH)2-H3PO4–H2O at 5, 15, 25 and 37.5°C. Journal of the National Bureau of Standards, 74A, 461–75

    Article  Google Scholar 

  25. Ravnik, C., Sand, H. F. and Morch, T. (1962). Enamel lesions produced in vitro by solutions of EDTA and EDTA-sodium salts. Acta Odontologica Scandinavica, 20, 349–58

    Article  Google Scholar 

  26. Neuman, W. F. and Neuman, M. W. (1968). The Chemical Dynamics of Bone Mineral, University of Chicago Press, Chicago, pp. 142–3

    Google Scholar 

  27. Wilkinson, J. F. (1958). The extracellular polysaccharides of bacteria. Bacteriological Reviews, 22, 46–73

    Google Scholar 

  28. Dawes, E. A. and Senior, P. J. (1973). The role and regulation of energy reserve polymers in microorganisms, in Advances in Microbial Physiology, vol. 10 (Eds Rose, A. H. and Tempest, D. W. ), Academic Press, London, pp. 136–266

    Google Scholar 

  29. Greenberg, E. and Preiss, J. (1965). Biosynthesis of bacterial glycogen. II. Purification and properties of the adenosine diphosphoglucose: glycogen transglucosylase of Arthrobacter Species NRRL B 1973. Journal of Biological Chemistry, 240, 2341–8

    Google Scholar 

  30. Gibbons, R. J. and Kapsimalis, B. (1963). Synthesis of intracellular iodophilic polysaccharide by Streptococcus mitis. Archives of Oral Biology, 8, 319–29

    Article  Google Scholar 

  31. van Houte, J. and Jansen, H. M. (1970). Role of glycogen in survival of Streptococcus mitis. Journal of Bacteriology, 101, 1083–5

    Google Scholar 

  32. Tanzer, J. M., Freedman, M. L., Woodiel, F. N., Eifert, R. L. and Rinehimer, L. A. (1976). Association of Streptococcus mu-tans virulence with synthesis of intracellular polysaccharide, in Microbial Aspects of Dental Caries (Eds Stiles, H. M., Loesche, W. J. and O’Brien, T. C.), Sp. Supp. Microbiology Abstracts, vol. III, pp. 597–616

    Google Scholar 

  33. Tanzer, J. M. and Krichevsky, M. I. (1970). Polyphosphate formation by caries conducive streptococcus SL1. Biochimica et Biophysica Acta, 215, 368–76

    Article  Google Scholar 

  34. Robyt, J. F. and Corrigan, A. J. (1977). The mechanism of dextransucrase action. Activation of dextransucrase from Sireptococcus mutans OMZ 176 by dextran and modified dextran and the nonexistence of the primer requirement for the synthesis of dextran. Archives of Biochemistry and Biophysics, 183, 726–31

    Article  Google Scholar 

  35. Jeanes, A., Haynes, W. C., Wilham, C. A., Rankin, J. C., Melvin, E. H., Austin, K. J., Clusky, J. E., Fisher, B. E., Tsuchiya, H. W. and Rist, E. E. (1954). Characterisation and classification of dextrans from ninety-six strains of bacteria. Journal of the American Chemical Society, 76, 5041–52

    Article  Google Scholar 

  36. Robyt, J. F. and Taniguchi; H. (1976). The mechanism of dextransucrase action. Biosynthesis of branch links by acceptor reactions with dextran. Archives of Biochemistry and Biophysics, 174, 129–35

    Article  Google Scholar 

  37. Rutter, P. R. and Abbott, A. (1978). A study of the interaction between oral streptococci and hard surfaces. Journal of General Microbiology, 105, 219–26

    Article  Google Scholar 

  38. Rölla, G. (1976). Inhibition of adsorption general considerations, in Microbial Aspects of Dental Caries (Eds Stiles, H. M., Loesche, W. J. and O’Brien, T. C.), Sp. Supp. Microbiology Abstracts, vol. II, pp. 309–24

    Google Scholar 

  39. Gibbons, R. J. and van Houte, J. (1975). Bacterial adherence in oral microbial ecology. Annual Review of Microbiology, 29, 19–44

    Article  Google Scholar 

  40. Harris, R. H. and Mitchell, R. (1973). The role of polymers in microbial aggregation. Annual Review of Microbiology, 27, 27–50

    Article  Google Scholar 

  41. McDougall, W. A. (1964). Studies on the dental plaque. IV. Levans and the dentalplaque. Australian Dental Journal, 9, 1–5

    Article  Google Scholar 

  42. Wood, J. M. (1967). The amount, distribution and metabolism of soluble polysaccharides in human dental plaque. Archives of Oral Biology, 12, 849–58

    Article  Google Scholar 

  43. Carlsson, J. (1970). A levansucrase from Streptococcus mutans. Caries Research, 4, 97–113

    Article  Google Scholar 

  44. Stivala, S. S., Bahary, N. S., Long, L.W., Ehrlich, J. and Newbrun, E. (1975). Levans. II. Light scattering and sedimentation data of Streptococcus salivarius levan in water. Biopolymers, 14, 1283–92

    Article  Google Scholar 

  45. Baird, J. K., Longyear, V. M. C. and Ellwood, D. C. (1973). Water insoluble and soluble glucans produced by extracellular glycosyltransferases from Streptococcus mutans. Microbios, 8, 143–50

    Google Scholar 

  46. Robrish, S. A., Reid, W. and Krichevsky, M. I. (1972). Distribution of enzymes forming polysaccharide from sucrose and the composition of extracellular polysaccharide synthesised by Streptococcus mu-tans. Applied Microbiology, 24, 184–90

    Google Scholar 

  47. Bowden, G. H. (1969).’The components of the cell walls and extracellular slime of four strains of Staphylococcus salivarius isolated from human dental plaque. Archives of Oral Biology, 14, 685–97

    Google Scholar 

  48. Rosan, B. and Hammond, B. F. (1974). Extracellular polysaccharides of Actinomyces viscosus. Infection and Immunity, 10, 304–8

    Google Scholar 

  49. Van der Hoeven, J. S. (1974) A slime-producing microorganism in dental plaque of rats, selected by glucose feeding. Chemical composition of extracellular slime elaborated by Actinomyces viscosus strain Nyl. Caries Research, 8, 193–210

    Article  Google Scholar 

  50. Baer, P. N. and Newton, W. L. (1959). The occurrence of periodontal disease in germ-free mice. Journal of Dental Research, 38, 1238

    Article  Google Scholar 

  51. Dawes, C. and Jenkins, G. N. (1962). Some inorganic constituents of dental plaque and their relationship to early calculus formation and caries. Archives of Oral Biology, 7, 161–72

    Article  Google Scholar 

  52. Kleinberg, I. (1970). Biochemistry of the dental plaque, in Advances in Oral Biology, vol. 4 (Ed. Staple, P. H. ), Academic Press, New York, pp. 43–90

    Google Scholar 

  53. Luoma, H. (1964). Lability of inorganic phosphate in dental plaque and saliva. Acta Odontologica Scandinavica, 22, supplement 41

    Google Scholar 

  54. Huh, C., Blackwell, R. Q. and Fosdick, L. S. (1959). The diffusion of glucose through microbial plaques. Journal of Dental Research, 38, 569–76

    Article  Google Scholar 

  55. Hardwick, J. L. (1963). The mechanism of fluorides in lessening susceptibility of dental caries. British Dental Journal, 114, 222–8

    Google Scholar 

  56. Birkeland, J. M., Jorkjent, L. and von der Fehr, F. R. (1971). The influence of fluoride rinses on the fluoride content of dental plaque in children. Caries Research, 5, 169–79

    Article  Google Scholar 

  57. Jenkins, G. N., Edgar, W. M. and Ferguson, D. B. (1969). The distribution and metabolic effects of human plaque fluorine. Archives of Oral Biology, 14, 105–19

    Article  Google Scholar 

  58. Hodge, H. C. and Smith, F. A. (1970). Minerals: Fluorine and dental caries, ch, 7 in Dietary Chemicals versus Dental Caries (Ed. Gould, R. F.), pp. 93–115, Advances in Chemistry Series, American Chemical Society

    Google Scholar 

  59. Armstrong, W. D., Blomquist, C. H., Singer, L., Pollock, M. E. and McLaren, L. C. (1965). Sodium fluoride and cell growth. British Medical Journal, 20 Feb., 1, 486–8

    Google Scholar 

  60. Streckfuss, J. L., Smith, W. N., Brown, L. R. and Campbell, M. M. (1974). Calcification of selected strains of Streptococcus mutans and Streptococcus sanguis. Journal of Bacteriology, 120, 502–6

    Google Scholar 

  61. Ennever, J., Vogel, J..J. and Brown, L. R. (1972). Survey of microorganisms for calcification in a synthetic medium. Journal of Dental Research, 51, 1483–6

    Article  Google Scholar 

  62. Reithe, P. (1974). Dental calculus, its formation, structure and role in the pathogenesis of gingival and periodontal diseases, in Metabolism and Cariogenicity of Dental Plaque, Forum Medici, Zyma, Nyon, pp. 37–50

    Google Scholar 

  63. Schröder, H. E., Lenz, H. and Muhlemann, H. R. (1964). Microstructures and mineralisation of early dental calculus. Helvetica Odontologica Acta, 8, 1–22

    Google Scholar 

  64. Gron, P., Yao, K. and Spinelli, M. (1969). A study of the inorganic constituents in dental plaque. Journal of Dental Research, Supplement, 48, 799–805

    Article  Google Scholar 

  65. Williams, R. A. D. (1968). Permeability of fluoride-trained streptococci to fluoride. Archives of Oral Biology, 13, 1031–3

    Article  Google Scholar 

  66. Simon, E. W. and Beevers, H. (1952). The effect of pH on the biological activities of weak acids and bases. I. The most usual relationship between pH and activity. New Phytologist, 51, 163–89

    Article  Google Scholar 

  67. Albert, A. (1965). Selective Toxicity, Methuen, London

    Google Scholar 

  68. Singer, L., Jarvey, B. A., Venkateswarlu, P. and Armstrong, W. D. (1970). Fluoride in plaque. Journal of Dental Research, 49, 455

    Article  Google Scholar 

  69. Birkeland, J. M. and Rölla, G. (1971). In vitro affinity of fluoride to proteins, dextrans, bacteria and salivary components. Archives of Oral Biology, 17, 455–63

    Article  Google Scholar 

  70. Kashket, S. and Rodriguez, V. M. (1976). Fluoride accumulation by a strain of human oral Streptococcus sanguis. Archives of Oral Biology, 21, 459–64

    Article  Google Scholar 

  71. Whitford, G. M., Schuster, G. S., Pashley, D. H. and Venkateswarlu, P. (1977). Fluoride uptake by Streptococcus mutans 6715. Infection and Immunity, 18, 680–87

    Google Scholar 

  72. Birkeland, J. M. (1975). In vitro study on the mechanisms of action of fluoride in low concentrations. Caries Research, 9, 110–18

    Article  Google Scholar 

  73. Gron, P. (1973). Remineralisation of enamel lesions in vivo. Oral Sciences Reviews, 3, 84–98

    Google Scholar 

  74. Hewitt, E. J. and Nicholas, D. J. D. (1963). Cations and anions: inhibitors and interactions in metabolism and enzyme activity, in Metabolic Inhibitors vol. III (Eds Hochster, R. M. and Quastel, J. H.), Academic Press, New York, pp. 311–436

    Google Scholar 

  75. Melchoir, N. C. and Melchoir, J. B. (1956). Inhibition of yeast hexokinase by fluoride ion. Science, 124, 402–3

    Article  Google Scholar 

  76. Nejjar, V. A. (1948). Isolation and properties of phosphoglucomutase. Journal of Biological Chemistry, 175, 281

    Google Scholar 

  77. Cimasoni, G. (1972). The inhibition of enolase by fluoride in vitro. Caries Research, 6, 93–102

    Article  Google Scholar 

  78. Slater, E. C. and Bonner, W. D. (1952). The effect of fluoride on the succinic oxidase system. Biochemical Journal, 52, 185–96

    Article  Google Scholar 

  79. Hamilton, I. R. (1969). Studies with fluoride-sensitive and fluoride-resistant strains of Streptococcus salivarius. I. Inhibition of both intracellular polyglucose synthesis and degradation of fluoride. Canadian Journal of Microbiology, 15, 1013–9

    Article  Google Scholar 

  80. Hamilton, I. R. (1969). Studies with fluoride-sensitive and fluoride-resistant strains of Streptococcus salivarius. II. Fluoride inhibition of glucose metabolism. Canadian Journal of Microbiology, 15, 1021–7

    Article  Google Scholar 

  81. Kabak, H. R. (1970). Transport. Annual Reviews of Biochemistry, 39, 561–98

    Article  Google Scholar 

  82. Luoma, H. and Tuompo, H. (1975). The relationship between sugar metabolism and potassium translocation by caries-inducing streptococci and the inhibitory role of fluoride. Archives of Oral Biology, 20, 749–55

    Article  Google Scholar 

  83. Kanapka, J. and Hamilton, I. R. (1971). Fluoride inhibition of enolase activity in vivo and its relationship to the inhibition of glucose-6-P formation in Streptococcus salivarius. Archives of Biochemistry and Biophysics, 146, 167–74

    Article  Google Scholar 

  84. Williams, R. A. D. (1969). Glycolytic intermediates in `fluoride-trained’ and con-trol cultures of an oral enterococcus. Archives of Oral Biology, 14, 265–70

    Article  Google Scholar 

  85. Cimasoni, G. (1972). The inhibition of enolase by fluoride in vitro. Caries Research, 6, 93–102

    Article  Google Scholar 

  86. Jenkins, G. N., Ferguson, D. B. and Edgar, W. M. (1967). Fluoride and the metabolism of salivary bacteria. Helvetica Odontologica Acta, 11, 2–10

    Google Scholar 

  87. Leach, S. A. (1959). Reactions of fluoride with powdered enamel and dentine. British Dental Journal, 106, 133–142

    Google Scholar 

  88. Williams, R. A. D. (1967). The growth of Lancefield Group D streptococci in the presence of sodium fluoride. Archives of Oral Biology, 12, 109–17

    Article  Google Scholar 

  89. Hamilton, I. R. (1969). Growth characteristics of adapted and ultra-violet induced mutants of Streptococcus salivarius resistant to fluoride. Canadian Journal of Microbiology, 15, 287–95

    Article  Google Scholar 

  90. De Stoppelaar, J. D., van Houte, J. and Backer Dirks, O. (1969). The relationship between extracellular polysaccharide-producing streptococci and smooth surface caries in 13-year-old children. Caries Research, 3, 190–9

    Article  Google Scholar 

  91. Bowen, W. H. (1972). The effect of fluoride and molybdate on caries activity and the composition of plaque in monkeys (M. irus). Caries Research, 6, 254–5

    Google Scholar 

  92. Rölla, G. and Melsen, B. (1975). Desorption of protein and bacteria from hydroxyapatite by fluoride and monofluorophosphate. Caries Research, 9, 66–73

    Article  Google Scholar 

  93. Aasenden, R., De Paola, P. F. and Brudevold, F. (1972). Effects of daily rinsing and ingestion of fluoride solutions upon dental caries and enamel fluoride. Archives of Oral Biology, 17, 1705–14

    Article  Google Scholar 

  94. Woolley, L. H. and Rickles, N. H. (1971). Inhibition of acidogenesis in human dental plaque in situ following the use of topical sodium fluoride. Archives of Oral Biology, 16, 1187–94

    Article  Google Scholar 

  95. Birkeland, J. M. (1972). Effect of fluoride on the amount of dental plaque in children. Scandinavian Journal of Dental Research, 80, 82–4

    Google Scholar 

  96. Loesche, W. J., Murray, R. J. and Mellberg, J. R. (1973). The effect of topical fluoride on percentages of Streptococcus mutans and Streptococcus sanguis in interproximal plaque. Caries Research, 7, 283–96

    Article  Google Scholar 

  97. Loesche, W. J., Syed, S. A., Murray, R. J. and Mellberg, J. R. (1975). Effect of topical acidulated phosphate fluoride on percentages of Streptococcus mutans and Streptococcus sanguis in plaqué. Caries Research, 9, 139–55

    Article  Google Scholar 

  98. Jordan, H. V., Englander, H. R. and Lim, S. (1969). Potentially cariogenic streptococci in selected population groups in the Western Hemisphere. Journal of the American Dental Association, 78, 1331–5

    Article  Google Scholar 

  99. Edwardsson, S., Koch, G. and Õbrink, M. (1972). Streptococcus sanguis, Streptococcus mutans and Streptococcus salivarius in saliva. Prevalence and relation to caries increment and prophylactic measures. Odontologisk Revy, 23, 279–96

    Google Scholar 

Download references

Authors

Copyright information

© 1981 L. M. Silverstone, N. W. Johnson, J. M. Hardie and R. A. D. Williams

About this chapter

Cite this chapter

Silverstone, L.M., Johnson, N.W., Hardie, J.M., Williams, R.A.D. (1981). Biochemical Events in Dental Plaque. In: Dental Caries. Palgrave, London. https://doi.org/10.1007/978-1-349-16547-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-349-16547-6_5

  • Publisher Name: Palgrave, London

  • Print ISBN: 978-0-333-21179-3

  • Online ISBN: 978-1-349-16547-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics