Advertisement

Field-Ion Microscopy

  • D. K. Bowen
  • C. R. Hall
Chapter

Abstract

One consequence of increasing the resolution of any technique is that the amount of material that can be studied at any one time decreases, since otherwise there is too much information present to be recorded or assimilated. Thus it would not be feasible to resolve simultaneously in the electron microscope all the atoms present in a thin foil. Where the electron microscope has been used to resolve atoms, either the planes of atoms in a crystal have been observed (essentially a diffraction effect), or else atoms deposited upon the surface of a film of some different material have been imaged. It is, in fact, almost essential to study only the surface of a solid at very high resolution, since the amount of detail to be recorded is thereby reduced to manageable proportions. One instrument that enables the atoms in the surface of a solid to be observed is the field-ion microscope, whose operation and advantages are described in this chapter.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Berg, H., Tsong, T. T., and Cohen, J. B., (1973), Acta metall., 21, 1589CrossRefGoogle Scholar
  2. Bowkett, K. M. and Smith, D. A., (1970), Field Ion Microscopy, North-Holland, AmsterdamGoogle Scholar
  3. Boyes, E. D. and Southon, M. J., (1972), Vacuum 22, 447CrossRefGoogle Scholar
  4. Brandon, D. G., (1963), Br. J. appl. Phys., 14, 474CrossRefGoogle Scholar
  5. Brandon, D. G., (1965), Surf. Sci., 3, 1CrossRefGoogle Scholar
  6. Ehrlich, G., and Hudda, F. G., (1962), J. chem. Phys., 36, 3233CrossRefGoogle Scholar
  7. McNeil, J. F., (1968), Metallog., 1, 91CrossRefGoogle Scholar
  8. Müller, E. W., (1959), in Structure and Properties of Thin Films, (eds C. A. Neugebaur, J. B. Newkirk and D. A. Vermilyea), Wiley, New York, 476Google Scholar
  9. Müller, E. W., (1960), Adv. Electronics Electron Phys., 13, 83CrossRefGoogle Scholar
  10. Müller, E. W., (1962), Proc. Int. Conf. Crystal Lattice Defects, Kyoto; (1963), J. phys. Soc. Japan, 18, Supp. II, 1Google Scholar
  11. Müller, E. W., (1965), Science, 149, 591CrossRefGoogle Scholar
  12. Müller, E. W., (1967), Surf. Sci., 8, 462CrossRefGoogle Scholar
  13. Müller, E. W., (1970), Modern Di f fraction and Imaging Techniques in Material Science, North-Holland, AmsterdamGoogle Scholar
  14. Müller, E. W., and Rendulic, K. D., (1967), Science, 156, 961CrossRefGoogle Scholar
  15. Müller, E. W., and Tsong, T. T., (1969), Field Ion Microscopy, Elsevier, New YorkGoogle Scholar
  16. Müller, E. W., Panitz, J. A., and McLane, S. B., (1968), Rev. Scient. Instrum., 39, 83CrossRefGoogle Scholar
  17. Nishikawa, O., and Müller, E. W., (1964), J. appl. Phys., 35, 2806CrossRefGoogle Scholar
  18. Southon, M. J., and Brandon, D. G., (1963), Phil. Mag., 8, 579CrossRefGoogle Scholar
  19. Turner, P. J., Cartwright, P., Boyes, E. D., and Southon, M. J., (1972), Adv. Electronics Electron Phys., 33, 1077.CrossRefGoogle Scholar

Copyright information

© D. K. Bowen and C. R. Hall 1975

Authors and Affiliations

  • D. K. Bowen
    • 1
  • C. R. Hall
    • 2
  1. 1.Department of EngineeringUK
  2. 2.Department of PhysicsUniversity of WarwickUK

Personalised recommendations