Cellular and Molecular Pharmacology of the Anthrapyrazole Antitumour Agents

  • Laurence H. Patterson
  • David R. Newell
Chapter
Part of the Topics in Molecular and Structural Biology book series (TMSB)

Abstract

The development of the anthrapyrazole antitumour agents may yet be one of the major achievements of developmental cancer chemotherapy in the 1980s. As with many synthetic or semisynthetic DNA binding agents, the rationale for the synthesis of the anthrapyrazoles stemmed from the desire to identify a drug with equivalent antitumour activity to that of doxorubicin (Figure 2.1, I) yet without the cumulative dose-limiting cardiotoxicity which has consistently been a feature of anthracycline chemotherapy. As discussed later in this chapter, early clinical data suggest that at least one of the anthrapyrazoles has significant single-agent antitumour activity in patients and three compounds remain in clinical trials.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Acton, E. M. and Tong, G. L. (1981). Synthesis and preliminary antitumour evaluation of 5-iminodoxorubicin. J. Med. Chem., 24, 669–673CrossRefGoogle Scholar
  2. Allan, S. G., Cummings, J., Evans, S., Nicolson, M., Stewart, M. E., Cassidy, J., Soukop, M., Kaye, S. B. and Smyth, J. F. (1991). Phase I study of the anthra-pyrazole biantrazole: clinical results and pharmacology. Cancer Chemother. Pharmacol., 28, 55–58CrossRefGoogle Scholar
  3. Ames, M. M., Loprinzi, C. L., Collins, J. M., van Haelst-Pisani, C, Richardson, R. L., Rubin, J. and Moertel, C. G. (1990). Phase I and clinical pharmacological evaluation of pirozantrone hydrochloride (oxantrazole). Cancer Res., 50, 3905–3909Google Scholar
  4. Basra, J., Wolf, C. R., Brown, J. R. and Patterson, L. H. (1985). Evidence for human liver mediated free-radical formation by doxorubicin and mitozantrone. Anti-cancer Drug Des., 1, 45–52Google Scholar
  5. Burchenal, J. H., Pancost, T. and Elslager, E. (1985). Anthrapyrazole and amsa-crine analogs in mouse and human leukaemia in vitro andin vivo. Proc. Am. Assoc. Cancer Res., 26, 224Google Scholar
  6. Chen, K.-X., Gresh, N. and Pullman, B. (1987). A theoretical study of the intercalative binding of the antitumour drug anthrapyrazole to double-stranded oligonucleotides. Anti-cancer Drug Des., 2, 79–84Google Scholar
  7. Cole, S. P. C. (1990). Patterns of cross-resistance in a multidrug-resistant small-cell lung carcinoma cell line. Cancer Chemother. Pharmacol., 26, 250–256CrossRefGoogle Scholar
  8. Cole, S. P. C., Downes, H. F., Mirski, S. E. L. and Clements D. J. (1990). Alterations in glutathione and glutathione-related enzymes in a multidrug resistant small cell lung cancer cell line. Mol. Pharmacol., 37, 192–197Google Scholar
  9. Cole, S. P. C., Downes, H. F. and Slovak, M. L. (1989). Effect of calcium antagonists on the chemosensitivity of two multidrug resistant human tumour cell lines which do not over express P-glycoprotein. Br. J. Cancer, 59, 42–46CrossRefGoogle Scholar
  10. Coley, H. M., Twentyman, P. R. and Workman, P. (1989). Identification of anthracyclines and related agents that retain preferential activity over adriamycin in multidrug-resistant cell lines, and further resistance modification by verapamil and cyclosporin A. Cancer Chemother. Pharmacol., 24, 284–290CrossRefGoogle Scholar
  11. Crooke, S. T., Duvernay, V. H., Galvan, L. and Prestayko, A. W. (1978). Structure-activity relationships of anthracyclines relative to effects on macro-molecular syntheses. Mol. Pharmacol., 14, 290–298Google Scholar
  12. Denny, W. A. and Wakelin, L. P. G. (1990). Kinetics of the binding of mitox-antrone, ametantrone and analogues to DNA: relationship with binding mode and antitumour activity. Anti-cancer Drug Des., 5, 189–200Google Scholar
  13. Erhlichman, C., Moore, M., Kerr, I. G., Wong, B., Eisenhauer, E., Zee, B. and Whitfield, L. R. (1991). Phase I pharmacokinetic and pharmacodynamic study of the new anthrapyrazole CI-937 (DUP937). Cancer Res., 51, 6317–6322Google Scholar
  14. Fisher, G. R., Brown, J. R. and Patterson, L. H. (1989). Redox cycling in MCF-7 cells by antitumour agents based on mitoxantrone. Free Radical Res. Commun., 7, 221–226CrossRefGoogle Scholar
  15. Fisher, G. R., Brown, J. R. and Patterson, L. H. (1990). Involvement of hydroxyl radical formation and DNA strand breakage in the cytotoxicity of anthraquinone antitumour agents. Free Radical Res. Commun., 11, 117–125CrossRefGoogle Scholar
  16. Fisher, G. R., Gutierrez, P., Oldcorne, M. A. and Patterson, L. H. (1992) NAD(P)H (quinone acceptor) oxidoreductase (DT-diaphorase)-mediated two electron reduction of anthraquinone-based antitumour agents and generation of hydroxyl radicals. Biochem. Pharmacol., 43, 575–585CrossRefGoogle Scholar
  17. Fisher, G. R. and Patterson, L. H. (1991). DNA strand breakage by peroxidase-activated mitoxantrone. J. Pharm. Pharmacol., 43, 65–68CrossRefGoogle Scholar
  18. Fisher, G. R. and Patterson, L. H. (1992). Lack of involvement of reactive oxygen in the cytotoxicity of mitoxantrone, CI-941 and ametantrone: Comparison with doxorubicin. Cancer Chemother. Pharmacol., 30, 451–458CrossRefGoogle Scholar
  19. Foster, B. J., Newell, D. R., Graham, M. A., Gumbrell, L. A., Jenns, K. E., Kaye, S. B. and Calvert, A. H. (1992). CI-941 phase I trial: Prospective evaluation of a pharmacokinetically guided dose escalation scheme. Eur. J. Cancer, 28, 463–469CrossRefGoogle Scholar
  20. Fox, M. E. and Smith, P. J. (1990). Long-term inhibition of DNA synthesis and the persistence of trapped topoisomerase II complexes in determining the toxicity of the antitumour DNA intercalators mAMSA and mitoxantrone. Cancer Res., 50, 5813–5818Google Scholar
  21. Frank, P. and Novak, R. F. (1986). Effects of anthrapyrazole antineoplastic agents on lipid peroxidation. Biochem. Biophys. Res. Commun., 140, 797–807CrossRefGoogle Scholar
  22. Frank, S. K., Mathiesen, D. A., Szurszewski, M., Kuffel, M. J. and Ames, M. M. (1989). Preclinical pharmacology of the anthrapyrazole analog oxantrazole (NSC-349174, Piroxantrone). Cancer Chemother. Pharmacol., 23, 213–218CrossRefGoogle Scholar
  23. Frank, S. K., Mathiesen, D. A., Whitfield, L. R. and Ames, M. M. (1987). Reverse phase high performance liquid chromatographic assay for the experimental anticancer agent anthrapyrazole analog oxantrazole (NSC-349174). J. Chromatogr. (Biomed. Appl.), 419, 225–232CrossRefGoogle Scholar
  24. Fry, D. W., Boritzki, T. J., Besserer, J. A. and Jackson, R. C. (1985). In vitro DNA strand scission and inhibition of nucleic acid synthesis in L1210 leukaemia cells by a new class of DNA complexers, the anthra[l,9-cd]pyrazol-6(2H)-ones (anthrapyrazoles). Biochem. Pharmacol., 34, 3499–3508CrossRefGoogle Scholar
  25. Gianni, L., Corden, B. J. and Myers, C. E. (1983). The biochemical basis of anthracycline toxicity and antitumour activity. In Hodgson, E., Bend, J. R. and Philpot, R. M. (Eds), Reviews in Biochemical Toxicology, Vol. 5, Elsevier, Amsterdam, pp. 1–82Google Scholar
  26. Graham, M. A., Newell, D. R., Butler, J., Hoey, B. and Patterson, L. H. (1987). The effect of the anthrapyrazole antitumour agent CI941 on rat liver microsome and cytochrome P450 reductase mediated free radical processes. Inhibition of doxorubicin activation in vitro. Biochem. Pharmacol., 36, 3345–3351CrossRefGoogle Scholar
  27. Graham, M. A., Newell, D. R., Patterson, L. H., Qualmann, C, Sinha, B. H. and Myers, C. E. (1989). The role of anthrapyrazole iron complexes on hydroxyl radical formation, DNA strand scission and cytotoxicity. Br. J. Cancer, 60, 501Google Scholar
  28. Hantel, A., Donehower, R. C., Rowinsky, E. K., Vance, E., Clarke, B. V., McGuire, W. P., Ettinger, D. S., Noe, D. A. and Grochow, L. B. (1990). Phase I and pharmacodynamics of piroxantrone (NSC 349174), a new anthrapyrazole. Cancer Res., 50, 3284–3288Google Scholar
  29. Hartley, J. A., Reszka, K. and Lown, J. W. (1988a). Photosensitization by antitumour agents. 4. Anthrapyrazole-photosensitized formation of single strand breaks in DNA. J. Free Radical Biol. Med., 4, 337–343CrossRefGoogle Scholar
  30. Hartley, J. A., Reszka, K., Zuo, E. T., Wilson, W. D., Morgan, A. R. and Lown, J. W. (1988b). Characterisation of the interaction of anthrapyrazole anticancer agents with deoxyribonucleic acids: Structural requirements for DNA binding, intercalation and photosensitisation. Mol. Pharmacol, 33, 265–271Google Scholar
  31. Havelick, M. J., Hamelehle, K. L. and Roberts, B. J. (1987). An in vitro/in vivo solid tumour model for assessing antitumour activity using murine melanoma B16 and a subline resistant to adriamycin. Proc. Am. Assoc. Cancer Res., 28, 451Google Scholar
  32. Judson, I. R. (1991). Anthrapyrazoles: true successors to the anthracyclines? Anti-cancer Drugs, 2, 223–231CrossRefGoogle Scholar
  33. Kessel, D. (1989). Probing modes of multi-drug resistance via photodynamic effects of anthrapyrazoles. In Tapeero, H., Robert, J. and Lampidis, T. J. (Eds), Anticancer Drugs, Colloque Insern., Vol. 191, J. Libbey, Eurotext Ltd, pp. 223–232Google Scholar
  34. Kharasch, E. D. and Novak, R. F. (1981). The molecular basis for the complexa-tion of adriamycin with flavin mononucleotide and flavin dinucleotide. Arch. Biochem. Biophys., 212, 20–36CrossRefGoogle Scholar
  35. Kharasch, E. D. and Novak, R. F. (1983a). Bis(alkylamino)anthracenedione antineoplastic activation by anthracyclines. Arch. Biochem. Biophys., 224, 682–694CrossRefGoogle Scholar
  36. Kharasch, E. D. and Novak, R. F. (1983b). Inhibitory effects of anthracenedione antineoplastic agents on hepatic and cardiac lipid peroxidation. J. Pharmacol. Exp. Ther., 226, 500–506Google Scholar
  37. Klohs, W. D., Steinkampf, R. W., Havelick, M. J. and Jackson, R. C. (1986). Resistance to anthrapyrazoles and anthracyclines in multidrug-resistant P388 murine leukaemia cells: Reversal by calcium blockers and calmodulin antagonists. Cancer Res., 46, 4352–4356Google Scholar
  38. Kolodziejczyk, P., Reszka, K. and Lown, J. W. (1986). Horseradish peroxidase oxidation of mitoxantrone. Spectrophotometric and electron paramagnetic resonance studies. J. Free Radical. Biol. Med., 2, 25–32Google Scholar
  39. Kolodziejczyk, P., Reszka, K. and Lown, J. W. (1988). Alternative to the bio-reductive activation of anthracyclines: enzymatic oxidative metabolism of anthracenediones, 5-iminodaunorubicin and anthrapyrazoles. In Oxy-radicals in Molecular Biology and Pathology, Alan R. Liss, New York, pp. 525–539Google Scholar
  40. Leopold, W. R., Mason, J. M., Plowman, J. and Jackson, R. C. (1985). Anthrapyrazoles, a new class of intercalating agents with high-level, broad spectrum activity against murine tumours. Cancer Res., 45, 5532–5539Google Scholar
  41. Lown, J. L., Chen, H.-H., Plambeck, J. A. and Acton, E. M. (1979). Diminished superoxide generation by reduced 5-iminodaunorubicin relative to daunorubicin and the relationship to cardiotoxicity of the anthracycline antitumour agents. Biochem. Pharmacol., 28, 2563–2568CrossRefGoogle Scholar
  42. Lui, L. F. (1989). DNA topoisomerase poisons as antitumour drugs. Ann. Rev. Biochem., 58, 351–375CrossRefGoogle Scholar
  43. Malhotra, D. and Hopfinger, A. J. (1980). Conformational flexibility of dinucleotide dimers during unwinding from the B-form to an intercalation structure. Nucleic Acids Res., 8, 5289CrossRefGoogle Scholar
  44. Mason, R. P. and Chignell, C. F. (1982). Free radicals in pharmacology and toxicology—selected topics. Pharmacol. Rev., 33, 189–211Google Scholar
  45. Nordblom, G. D., Pachla, L. A., Chang, T., Whitfield, L. R. and Showalter, H. D. H. (1989). Development of a radioimmunoassay for the anthrapyrazole chemotherapy agent CI-937 and the pharmacokinetics of CI-937 in rats. Cancer Res., 49, 5345–5341Google Scholar
  46. Ohlson, R. D. and Mushlin, P. S. (1990). Doxorubicin cardiotoxicity: analysis of prevailing hypotheses. FASEB Jl., 4, 3076–3086Google Scholar
  47. Patterson, L. H. and Basra, J. (1985) Lack of mitoxantrone free radicals and redox cycling in rabbit heart sarcoplasmic reticulum. Br. J. Cancer, 52, 416 (abstract)Google Scholar
  48. Patterson, L. H., Gandecha, B. M. and Brown, J. R. (1983). 1,4-Bis (2-(2-hydroxyethylaminoethyl))9,10 anthracenedione, an anthraquinone antitumour agent that does not cause lipid peroxidation in vivo: comparison with daunorubicin. Biochem. Biophys. Res. Commun., 110, 399–405CrossRefGoogle Scholar
  49. Peters, J. M., Gordon, G. R., Kashiwase, D., Lown, J. W., Yen, S.-F. and Plambeck, J. A. (1986). Redox activities of antitumour anthracyclines determined by microsomal oxygen consumption and assays of superoxide anion and hydroxyl radical generation. Biochem. Pharmacol., 35, 1309–1323CrossRefGoogle Scholar
  50. Reszka, K., Hartley, J. A., Kolodziejczyk, P. and Lown, J. W. (1989). Interaction of the peroxidase-derived metabolite of mitoxantrone with nucleic acids. Evidence for covalent binding of 14C-labelled drug. Biochem. Pharmacol., 38, 4253–4260CrossRefGoogle Scholar
  51. Reszka, K., Kolodziejczyk, P., Hartley, J. A., Wilson, W. D. and Lown, J. W. (1988a). Molecular pharmacology of anthracenedione-based anticancer agents. In Lown, W. (Ed.), Bioactive Molecules, Vol. 6, Elsevier, Amsterdam, pp. 401–445Google Scholar
  52. Reszka, K., Kolodziejczyk, P. and Lown, J. W. (1986a). Photosensitisation by antitumour agents. 2. Anthrapyrazole-photosensitised oxidation of ascorbic acid and 3–4-dihydroxyphenylalanine. J. Free Radical Biol. Med., 2, 203–211CrossRefGoogle Scholar
  53. Reszka, K., Kolodziejczyk, P. and Lown, J. W. (1986b). Photosensitisation by antitumour agents. 3. Spectroscopic evidence for superoxide and hydroxyl radical production by anthrapyrazole-sensitised oxidation of NADH. J. Free Radical Biol. Med., 2, 267–274CrossRefGoogle Scholar
  54. Reszka, K., Kolodziejczyk, P. and Lown, J. W. (1988b). Enzymatic activation and transformation of the antitumour agent mitoxantrone. J. Free Radical Biol. Med., 5, 13–22CrossRefGoogle Scholar
  55. Reszka, K. and Lown, J. W. (1989). Photosensitisation of anticancer agents. 8. One-electron reduction of mitoxantrone: an epr and spectrophotometric study. Photochem. Photobiol., 50, 297–304CrossRefGoogle Scholar
  56. Reszka, K., Tsoungas, P. G. and Lown, J. W. (1986c). Photosensitisation by antitumour agents 1 : Production of singlet oxygen during irradiation of anthra-pyrazoles with visible light. Photochem. Photobiol., 43, 499–504CrossRefGoogle Scholar
  57. Sebolt, J. S., Havlick, M. J., Hamelehle, K. L., Klohs, W. D., Steinkampf, R. W. and Jackson, R. C. (1985). Establishment of adriamycin-resistant mammary carcinoma 16/C in vitro and its sensitivity to the anthrapyrazoles CI-942 and CI-937. Proc. Am. Assoc. Cancer Res., 26, 339Google Scholar
  58. Showalter, H. D. H., Fry, D. W., Leopold, W. R., Lown, J. W., Plambeck, J. A. and Reszka, K. (1986). Design, biochemical pharmacology, electrochemistry and tumour biology of anti-tumour anthrapyrazoles. Anti-cancer Drug Des., 1, 73–85Google Scholar
  59. Showalter, H. D. H., Johnson, J. L., Hoftiezer, J. M., Turner, W. R., Werbel, L. M., Leopold, W. R., Shillis, J. L., Jackson, R. C. and Eislager, E. F. (1987). Anthrapyrazole anticancer agents. Synthesis and structure-activity relationships against murine leukaemias. J. Med. Chem., 30, 121–131CrossRefGoogle Scholar
  60. Showalter, H. D. H., Johnson, J. L., Werbel, L. M., Leopold, W. R., Jackson, R. C. and Elslager, E. F. (1984). 5-[(Alkylamino)amino]-substituted anthra[l,9-cd]pyrazol-6(2H)-ones as novel anticancer agents. Synthesis and biological evaluation. J. Med. Chem., 27, 253–255CrossRefGoogle Scholar
  61. Singh, Y., Ulrich, L., Katz, D., Bowen, P. and Krishna, G. (1989). Structural requirements for anthracyciine-induced cardiotoxicity and antitumour effects. Toxicol. Appl. Pharmacol., 100, 9–23CrossRefGoogle Scholar
  62. Sinha, B. K., Katki, A. G., Batist, G., Cowan, K. H. and Myers, C. E. (1987). Differential formation of hydroxyl radicals by adriamycin in sensitive and resistant human breast tumour cells: Implications for the mechanism of action. Biochemistry, 26, 3776–3781CrossRefGoogle Scholar
  63. Smith, P. J. (1990). DNA topoisomerase dysfunction: A new goal for antitumour chemotherapy. Bioessays, 12, 167–172CrossRefGoogle Scholar
  64. Stuart-Harris, R., Pearson, M., and Smith, I. E. (1984). Cardiotoxicity associated with mitoxantrone. Lancet, 2, 219CrossRefGoogle Scholar
  65. Talbot, D. C, Smith, I. E., Mansi, J. L., Judson, I. R., Calvert, A. H. and Ashley, S. E. (1991). Anthrapyrazole CI-941: A highly active new agent in the treatment of advanced breast cancer. J. Clin. Oncol., 9, 2141–2147Google Scholar
  66. Tong, G. L., Henry, D. W. and Acton, E. M. (1979). 5-Iminodaunorubicin. Reduced cardiotoxic properties in an antitumour anthracycline. J. Med. Chem., 22, 36–39CrossRefGoogle Scholar
  67. Unverferth, D. V., Bashore, T. M., Magorien, R. D., Fetters, J. K. and Neidhart, J. A. (1984). Histologic and functional characteristics of human heart after mitoxantrone therapy. Cancer Treatment Symposia, 3, 47–53Google Scholar
  68. van de Graaf, W. T. A. and de Vries, E. G. E. (1990). Mitoxantrone: Bluebeard for malignancies. Anti-cancer Drugs, 1, 109–125CrossRefGoogle Scholar
  69. Von Sonntag, C. (1987). In The Chemical Basis of Radiation Biology, Taylor and Francis, LondonGoogle Scholar
  70. Walling, C. (1975). Fenton’s reagent revisited. Ace. Chem. Res., 8, 125CrossRefGoogle Scholar
  71. Wong, B., Nordblom, G., Chang, T. and Whitfield, L. (1989). Lack of dose proportional pharmacokinetics for CI-937, an anthrapyrazole DNA intercalator, in mice. Res. Commun. Chem. Pathol. Pharmacol., 66, 191–202Google Scholar

Copyright information

© The contributors 1994

Authors and Affiliations

  • Laurence H. Patterson
  • David R. Newell

There are no affiliations available

Personalised recommendations