Skip to main content

Multivariate QSAR and Computational Chemistry: A Novel Receptor Model of the D1 Agonist Binding Site

  • Chapter
  • 41 Accesses

Part of the book series: Topics in Molecular and Structural Biology ((TMSB))

Abstract

With recent advances in technology providing increased computer processing speeds and the parallel improvements to the graphical display of molecules, pressure is mounting to fully exploit these facilities for the purposes of drug design. While these new technologies allow problems to be visualized quickly, some inadequacies still exist concerning our understanding of the mechanism of drug action and molecular recognition. To optimize a series of bioactive compounds, molecular modelling (molecular mechanics, molecular orbital methods, etc.) and/or quantitative structure-activity relationship (QSAR) analyses are currently employed. These techniques are able to provide some ideas about the required geometric configuration and physicochemical profile of a series of drugs as well as giving some insight into the nature of drug-receptor interactions (e.g. the molecular mechanism(s) of agonist action). Ideally, this information is then used to design compounds possessing optimal structural and physicochemical characteristics with the aim of enhancing activity or selectivity in a series of drugs. Future developments in this area will no doubt further combine computational chemistry (i.e. both molecular modelling and calculated or empirical physicochemical property information) and QSAR methods.1

This is a preview of subscription content, log in via an institution.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Livingstone, D. J. (1991). Quantitative structure-activity relationships. In Similarity Models in Organic Chemistry, Biochemistry and Related Fields, ed. Zalewski, R. I., Krygowski, T. M. and Shorter, J., Elsevier, Amsterdam, pp. 558–627

    Google Scholar 

  2. Hansch, C. and Leo, A. (1979). Substituent Constants for Correlation Analysis in Chemistry and Biology, Wiley, New York

    Google Scholar 

  3. Hyde, R. M. and Livingstone, D. J. (1988). Perspectives in QSAR: computer chemistry and pattern recognition, J. Comp.-Aided Mol. Des., 2, 145–155

    Article  Google Scholar 

  4. Lewis, D. F. V. (1990). MO-QSARs: a review of molecular-orbital generated quantitative structure-activity relationships. Prog. Drug Metab., 12, 205–255

    Google Scholar 

  5. Buckley, S., Ford, M. G., Leake, L. D., Salt, D. W., Burt, P. E., Moss, M. D. V., Brearley, C. J. and Livingstone, D. J. (1987). A neurotoxicological investigation of the action of synthetic pyrethroid insecticides against adult houseflies Musca domestica L. In QSAR in Drug Design and Toxicology, ed. Hadzi, D. and Jerman-Blazic, B., Elsevier, Amsterdam, pp. 336–339

    Google Scholar 

  6. Hudson, B., Livingstone, D. J. and Rahr, E. (1989). Pattern recognition display methods for the analysis of computed molecular properties, J. Comp.-Aided Mol. Des., 3, 55–69

    Article  Google Scholar 

  7. Topliss, J. G. and Edwards, R. P. (1979). Chance factors in studies of quantitative structure-activity relationships, J. Med. Chem., 22, 1238–1244

    Article  Google Scholar 

  8. Franke, R. (1984). Theoretical Drug Design Methods, Elsevier, Amsterdam, pp. 188, 203, 289

    Google Scholar 

  9. Livingstone, D. J. (1991). Pattern recognition methods in rational drug design, Methods Enzymol., 203, 613–638

    Article  Google Scholar 

  10. Livingstone, D. J. and Rahr, E. (1988). Corchop — An interactive routine for the dimension reduction of large QSAR data sets, Quant. Struct.-Act. Relat., 7, 103–108

    Google Scholar 

  11. Chatfield, C. and Collins, A. J. (1986). Introduction to Multivariate Analysis, Chapman and Hall, London

    Google Scholar 

  12. Brereton, R. G. (1990). Chemometrics: Applications of Mathematics and Statistics to Laboratory Systems, Ellis Horwood, London pp. 111–126

    Google Scholar 

  13. Kowalski, B. R. and Bender, C. F. (1973). Pattern recognition. II. Linear and nonlinear methods for displaying chemical data, J. Am. Chem. Soc., 95, 686–693

    Article  Google Scholar 

  14. Livingstone, D. J., Hesketh, G. and Clayworth, D. (1991). Novel method for the display of multivariate data using neural networks, J. Mol. Graph., 9, 115–118

    Article  Google Scholar 

  15. Zupan, J. and Gasteiger, J. (1991). Neural networks: a new method for solving chemical problems or just a passing phase? Anal. Chim. Acta, 248, 1–30

    Article  Google Scholar 

  16. Aoyama, T., Suzuki, Y. and Ichikawa, H. (1990). Neural networks applied to structure-activity relationships, J. Med. Chem., 33, 905–908

    Article  Google Scholar 

  17. Manallack, D. T. and Livingstone, D. J. (1992). Artificial neural networks: application and chance effects for QSAR analysis, Med. Chem Res., 2, 181–190

    Google Scholar 

  18. Aoyama, T., Suzuki, Y. and Ichikawa, H. (1990). Neural networks applied to quantitative structure-activity relationship analysis, J. Med. Chem., 33, 2583–2590

    Article  Google Scholar 

  19. Andrea, T. A. and Kalayeh, H. (1991). Applications of neural networks applied to structure-activity relationships of dihydrofolate reductase inhibitors, J. Med. Chem., 34, 2824–2836

    Article  Google Scholar 

  20. Qian, N. and Sejnowski, T. J. (1988). Predicting the secondary structure of globular proteins using neural network models, J. Mol. Biol., 202, 865–884

    Article  Google Scholar 

  21. McGregor, M. J., Flores, T. P. and Sternberg, M. J. E. (1989). Prediction of beta turns in proteins using neural networks, Protein Eng., 2, 521–526

    Article  Google Scholar 

  22. Kneller, D. G., Cohen, F. E. and Langridge, R. (1990). Improvements in protein secondary structure prediction by an enhanced neural network, J. Mol. Biol., 214, 171–182

    Article  Google Scholar 

  23. Rumelhart, D. E. and McClelland, J. L. (1988). Parallel Distributed Processing, Vol. 1, MIT Press, Cambridge, Mass.

    Google Scholar 

  24. Blaschko, H. (1957). Metabolism and storage of biogenic amines, Experientia, 13, 9–12

    Article  Google Scholar 

  25. Carlsson, A. (1975). Dopaminergic autoreceptors. In Chemical Tools in Catecholamine Research, Vol. II, ed. Almgren, O., Carlsson, A. and Engel, J., North-Holland, Amsterdam, pp. 219–224

    Google Scholar 

  26. Brown, J. H. and Mackman, M. H. (1972). Stimulation by dopamine of adenylate cyclase in retinal homogenates and of adenosine 3′-5′-cyclic monophosphate formation in intact retina, Proc. Natl Acad. Sci. USA, 69, 539–543

    Article  Google Scholar 

  27. Kebabian, J. W., Petzold, G. L. and Greengard, P. (1972). Dopamine sensitive adenylate cyclase in caudate nucleus of rat brain, and its similarity to the ‘dopamine receptor’, Proc. Natl Acad. Sci. USA, 69, 2145–2149

    Article  Google Scholar 

  28. Iversen, L. L. (1975). Dopamine receptors in the brain, Science, 188, 1084–1089

    Article  Google Scholar 

  29. Snyder, S. H., Creese, I. and Burt, D. R. (1975). The brain’s dopamine receptor: labelling with [3H]dopamine and [3H]haloperidol, Psychopharmacol. Commun., 1, 663–673

    Google Scholar 

  30. Roufogalis, B. D., Thornton, M. and Wade, D. N. (1976). Specificity of the dopamine sensitive adenylate cyclase for antipsychotic antagonists, Life Sci., 19, 927–934

    Article  Google Scholar 

  31. Kebabian, J. W. and Calne, D. B. (1979). Multiple receptors for dopamine, Nature, 227, 93–96

    Article  Google Scholar 

  32. Spano, P. F., Govini, S. and Trabucchi, M. (1978). Studies on the pharmacological properties of dopamine receptors in various areas of the central nervous system, Adv. Biochem. Psychopharmacol., 19, 155–165

    Google Scholar 

  33. Seeman, P. and Grigoriadis, D. (1987). Dopamine receptors in brain and periphery, Neurochem. Int., 10, 1–25

    Article  Google Scholar 

  34. Clark, D. and White, F. J. (1987). Review: D1 dopamine receptor — The search for a function: A critical evaluation of the D1/D2 dopamine receptor classification and its functional implications, Synapse, 1, 347–388

    Article  Google Scholar 

  35. Seeman, P. (1980). Brain dopamine receptors, Pharmacol. Rev., 32, 229–313

    Google Scholar 

  36. Sokoloff, P., Martres, M. P. and Schwartz, J. C. (1980). Three classes of dopamine receptor (D2, D3, D4) identified by binding studies with 3H-apomorphine and 3H-domperidone, Naunyn Schmiedebergs Arch. Pharmakol., 315, 89–102

    Article  Google Scholar 

  37. Beart, P. M. (1982). Multiple dopamine receptors — new vistas, Trends Pharmacol. Sci., 3, 100–102

    Article  Google Scholar 

  38. DeLean, A., Kilpatrick, B. F. and Caron, M. G. (1982). Dopamine receptor of the porcine anterior pituitary gland: evidence for two affinity states discriminated by both agonists and antagonists, Mol. Pharmacol., 22, 290–297

    Google Scholar 

  39. Sibley, D., DeLean, A. and Creese, I. (1982). Anterior pituitary dopamine receptors. Demonstration of interconvertible high and low affinity states of the D-2 dopamine receptors, J. Biol. Chem., 257, 6351–6361

    Google Scholar 

  40. Wreggett, K. A. and Seeman, P. (1984). Agonist high- and low-affinity states of the D2-receptor in calf brain. Partial conversion by guanine nucleotide, Mol. Pharmacol., 25, 10–17

    Google Scholar 

  41. Leff, S. E., Hamblin, M. W. and Creese, I. (1985). Interactions of dopamine agonists with brain D1 receptors labelled by 3H-antagonists, Mol. Pharmacol., 27, 171–183

    Google Scholar 

  42. Flaim, K. E., Gessner, G. W., Crooke, S. T., Heys, J. R. and Weinstock, J. (1986). Regulation of agonist and antagonist binding to striatal D-1 dopamine receptors: studies using the selective D-1 antagonist [3H]SK&F R-83566, Life Sci., 38, 2087–2096

    Article  Google Scholar 

  43. Urwyler, S. and Markstein, R. (1986). Identification of dopamine ‘D3’ and ‘D4’ binding sites, labelled with [3H]2-amino-6,7-dihydroxy-1,2,3,4-tetrahydronaphthalene, as high agonist affinity states of D1 and D2 dopamine receptors, respectively, J. Neurochem., 46, 1058–1067

    Article  Google Scholar 

  44. Cannon, J. G. (1985). Dopamine agonists: structure-activity relationships, Prog. Drug Res., 29, 303–414

    Article  Google Scholar 

  45. Katerinopoulos, H. E. and Schuster, D. I. (1987). Structure-activity relationships for dopamine analogues: a review, Drugs Fut., 12, 223–253

    Google Scholar 

  46. Bunzow, J. R., Van Tol, H. H. M., Grandy, D. K., Albert, P., Salon, J., Christie, M., Machida, C. A., Neve, K. A. and Civelli, O. (1988). Cloning and expression of a rat D2 dopamine receptor cDNA, Nature, 336, 783–787

    Article  Google Scholar 

  47. Masu, Y., Nakayama, K., Tamaki, H., Harada, Y., Kuno, M. and Nakanishi, S. (1987). cDNA cloning of bovine substance-K receptor through oocyte expression system, Nature, 329, 836–838

    Article  Google Scholar 

  48. Fargin, A., Raymond, J. R., Lohse, M. J., Kobilka, B. K., Caron, M. G. and Lefkowitz, R. J. (1988). The genomic clone G-21 which resembles a β-adrenergic sequence encodes the 5HT1a receptor, Nature, 335, 358–360

    Article  Google Scholar 

  49. Julius, D., MacDermott, A. B., Axel, R. and Jessell, T. M. (1988). Molecular characterization of a functional cDNA encoding the serotonin 1c receptor, Science, 241, 558–564

    Article  Google Scholar 

  50. Dearry, A., Gingrich, J. A., Falardeau, P., Fremeau, R. T. Jr., Bates, M. and Caron, M. G. (1990). Molecular cloning and expression of the gene for a human D1 dopamine receptor, Nature, 347, 72–76

    Article  Google Scholar 

  51. Monsma, F. J., Mahan, S. C., McVittie, L. D., Gerfen, C. R. and Sibley, D. R. (1990). Molecular cloning and expression of a D1 dopamine receptor linked to adenyl cyclase activation, Proc. Natl Acad. Sci. USA, 87, 6723–6727

    Article  Google Scholar 

  52. Sunahara, R. K., Niznik, H. B., Weiner, D. M., Stormann, T. M., Brann, M. R., Kennedy, J. L., Gelernter, J. E., Rozmahel, R., Yang, Y., Israel, Y., Seeman, P. and O’Dowd, B. F. (1990). Human dopamine D1 receptor encoded by an intronless gene on chromosome 5, Nature, 347, 80–83

    Article  Google Scholar 

  53. Zhou, Q-Y., Grandy, D. K., Thambi, L., Kushner, J. A., Van Tol, H. H. M., Cone, R., Pribnow, D., Salon, J., Bunzow, J. R. and Civelli, O. (1990). Cloning and expression of human and rat D1 dopamine receptors, Nature, 347, 76–80

    Article  Google Scholar 

  54. Civelli, O., Bunzow, J. R., Grandy, D. K., Zhou, Q-Y. and Van Tol, H. H. M. (1991). Molecular biology of the dopamine receptors, Eur. J. Pharmacol. Mol. Pharmacol. Section, 207, 277–286

    Article  Google Scholar 

  55. Sokoloff, P., Giros, B., Martres, M. P., Bouthenet, M. L. and Schwartz, J. C. (1990). Molecular cloning and characterization of a novel dopamine receptor (D3) as a target for neuroleptics, Nature, 347, 146–151

    Article  Google Scholar 

  56. Van Tol, H. H. M., Bunzow, J. R., Guan, H.-C., Sunahara, R. K., Seeman, P., Niznik, H. B. and Civelli, O. (1991). Cloning of the gene for a human dopamine D4 receptor with high affinity for the antipsychotic clozapine, Nature, 350, 610–614

    Article  Google Scholar 

  57. Sunahara, R. K., Guan, H. C., O’Dowd, B. F., Seeman, P., Laurier, L. G., Ng, G., George, S. R., Torchia, J., Van Tol, H. H. and Niznik, H. B. (1991). Cloning of the gene for a human dopamine D5 receptor with higher affinity for dopamine than D1, Nature, 350, 614–619

    Article  Google Scholar 

  58. Venter, J. C., Fraser, C., Kerlavage, A. and Buck, M. (1989). Molecular biology of adrenergic and muscarinic cholinergic receptors, Biochem. Pharmacol., 38, 1197–1208

    Article  Google Scholar 

  59. Findlay, J. and Eliopoulos, E. (1990). Three-dimensional modelling of G protein-linked receptors, Trends Pharmacol. Sci., 11, 492–499

    Article  Google Scholar 

  60. Dahl, S. G., Edvardsen, O. and Sylte, I. (1991). Molecular dynamics of dopamine at the D2 receptor, Proc. Natl. Acad. Sci. USA, 88, 8111–8115

    Article  Google Scholar 

  61. Hibert, M. F., Trumpp-Kallmeyer, S., Bruinvels, A. and Hoflack, J. (1991). Three-dimensional models of neurotransmitter G-binding protein-coupled receptors, Mol. Pharmacol., 40, 8–15

    Google Scholar 

  62. Sheppard, G. T. and Burghardt, C. R. (1974). The dopamine-sensitive adenylate cyclase of rat caudate nucleus. 1. Comparison with the isoproterenol-sensitive adenylate cyclase (beta receptor system) of rat erythrocytes in responses to dopamine derivatives, Mol. Pharmacol., 10, 721–726

    Google Scholar 

  63. Grol, C. J. and Rollema, H. (1977). Conformational analysis of dopamine by the INDO molecular orbital method, J. Pharm. Pharmacol., 29, 153–156

    Article  Google Scholar 

  64. McDermed, J. D., Freeman, H. S. and Ferris, R. M. (1979). Enantioselectivity in the binding of (+)- and (−)-2-amino-6,7-dihydroxy-1,2,3,4-tetrahydronaphthalene and related agonists to dopamine receptor. In Catecholamines: Basic and Clinical Frontiers, Vol. 1, ed. Usdin, E., Kopin, I. J. and Barchas, J., Pergamon Press, New York, pp. 568–570

    Chapter  Google Scholar 

  65. Seiler, M. P. and Markstein, R. (1982). Further characterization of structural requirements for agonists at the striatal dopamine D1 receptor. Studies with a series of monohydroxyaminotetralins on dopamine-sensitive adenylate cyclase and a comparison with dopamine receptor binding, Mol. Pharmacol., 22, 281–289

    Google Scholar 

  66. Kaiser, C., Dandridge, P. A., Garvey, E., Hahn, R. A., Sarau, H. M., Setler, P. E., Bass, L. S. and Clardy, J. (1982). Absolute stereochemistry and dopaminergic activity of enantiomers of 2,3,4,5-tetrahydro-7,8-dihydroxy-1-phenyl-1H-3-benzazepine, J. Med. Chem., 25, 697–703

    Article  Google Scholar 

  67. Nichols, D. E. (1983). The development of novel dopamine agonists. In Dopamine Receptors, ACS Symposium Series 224, ed. Kaiser, C. and Kebabian, J. W., American Chemical Society, Washington, D.C., pp. 201–218

    Chapter  Google Scholar 

  68. Dandridge, P. A., Kaiser, C., Brenner, M., Gaitanopoulos, D., Davis, L. D., Webb, R. L., Foley, J. J. and Sarau, H. M. (1984). Synthesis, resolution, absolute stereochemistry, and enantioselectivity of 3′,4′-dihydroxynomifensine, J. Med. Chem., 27, 28–35

    Article  Google Scholar 

  69. Weinstock, J., Oh, H-J., DeBrosse, C. W., Eggleston, D. S., Wise, M., Flaim, K. E., Gessner, G. W., Sawyer, J. L. and Kaiser, C. (1987). Synthesis, conformation, and dopaminergic activity of 5,6-ethano-bridged derivatives of selective dopaminergic 3-benzazepines, J. Med. Chem., 30, 1303–1308

    Article  Google Scholar 

  70. Brewster, W. K., Nichols, D. E., Riggs, R. M., Mottola, D. M., Lovenberg, T. W., Lewis, M. H. and Mailman, R. B. (1990). trans-10,11-dihydroxy-5,6,6a,7,8,12b-hexahydrobenzo[a]phenanthridine: a highly potent selective dopamine D1 full agonist, J. Med. Chem., 33, 1756–1764

    Article  Google Scholar 

  71. Martin, Y. C. (1992). New strategies that improve the efficiency of the 3D design of bioactive molecules. In Trends in QSAR and Molecular Modelling, 92, Proceedings of the 9th European symposium on structure-activity relationships: QSAR and molecular modelling, Strasbourg, France

    Google Scholar 

  72. Seiler, M. P., Hagenbach, A., Wuthrich, H-J. and Markstein, R. (1991). trans-Hexahydroindolo[4,3-ab]phenanthridines (‘benzergolines’), the first structural class of potent and selective dopamine D1 receptor agonists lacking a catechol group, J. Med. Chem., 34, 303–307

    Article  Google Scholar 

  73. Murray, A. M. and Waddington, J. L. (1990). New putative selective agonists at the D-1 dopamine receptor; behavioural and neurochemical comparison of CY 208–243 with SK&F 101384 and SK&F 103243, Pharmacol. Biochem. Behav., 35, 105–110

    Article  Google Scholar 

  74. Riggs, R. M., Nichols, D. E., Foreman, M. M., Truex, L. L., Glock, D. and Kohli, J. D. (1987). Specific dopamine D-1 and DA1 properties of 4-(mono-and dihydroxyphenyl)-1,2,3,4-tetrahydroisoquinoline and its tetrahydrothieno[2,3-c]pyridine analogue, J. Med. Chem., 30, 1454–1458

    Article  Google Scholar 

  75. Vinter, J. G., Davis, A. and Saunders, M. R. (1985). An integrated framework for molecular design I, J. Comp.-Aided Mol. Des., 1, 31–51

    Article  Google Scholar 

  76. Morley, S. D., Abraham, R. J., Haworth, I. S., Jackson, D. E., Saunders, M. R. and Vinter, J. G. (1991). COSMIC (90): An improved molecular mechanics treatment of hydrocarbons and conjugated systems, J. Comp.-Aided Mol. Des., 5, 475–504

    Article  Google Scholar 

  77. Stewart, J. J. P. (1987). MOPAC: A general molecular orbital package, QCPE 455. Quantum Chemistry Program Exchange, University of Indiana, Bloomington, Indiana, USA

    Google Scholar 

  78. Lloyd, E. J. and Andrews, P. R. (1986). A common structural model for central nervous system drugs and their receptors, J. Med. Chem., 29, 453–462

    Article  Google Scholar 

  79. Taylor, R., Kennard, O. and Versichel, W. (1984). The geometry of the N − H ⋯ O = C hydrogen bond. 3. Hydrogen-bond distances and angles, Acta Crystallogr. Sect. B Struct. Crystallogr. Cryst. Chem., 40, 280–288

    Article  Google Scholar 

  80. Tonani, R., Dunbar, J. Jr., Edmonston, B. and Marshall, G. R. (1987). Computer-aided molecular modelling of a D2-agonist dopamine pharmacophore, J. Comp.-Aided Mol. Des., 1, 121–132

    Article  Google Scholar 

  81. Baker, E. N. and Hubbard, R. E. (1984). Hydrogen bonding in globular proteins, Prog. Biophys. Molec. Biol., 44, 97–179

    Article  Google Scholar 

  82. Ceccarelli, C., Jeffrey, G. A. and Taylor, R. (1981). A survey of O − H ⋯ O hydrogen bond geometries determined by neutron diffraction, J. Mol. Struct., 70, 255–271

    Article  Google Scholar 

  83. Tintelnot, M. and Andrews, P. (1989). Geometries of functional group interactions in enzyme-ligand complexes: guides for receptor modelling, J. Comp.-Aided Mol. Des., 3, 67–84

    Article  Google Scholar 

  84. Pople, J. A. and Beveridge, D. L. (1970). Approximate Molecular Orbital Theory, McGraw-Hill, New York

    Google Scholar 

  85. Livingstone, D. J., Evans, D. A. and Saunders, M. R. (1992). Investigation of a charge-transfer substituent constant using computational chemistry and pattern recognition techniques, J. Chem. Soc. Perkin Trans. II, 1545–1550

    Google Scholar 

  86. Van de Waterbeemd, H. and Testa, B. (1987). The parametrization of lipophilicity and other structural properties in drug design. In Advances in Drug Research, Vol. 16, ed. Testa, B., Academic Press, London, pp. 85–225

    Google Scholar 

  87. Weinstock, J., Hieble, J. P. and Wilson, J. W. III (1985). The chemistry and pharmacology of 3-benzazepine derivatives, Drugs Fut., 10, 645–697

    Google Scholar 

  88. Pettersson, I., Liljefors, T. and Bogeso, K. (1990). Conformational analysis and structure-activity relationships of selective dopamine D-1 receptor agonists and antagonists of the benzazepine series, J. Med. Chem., 33, 2197–2204

    Article  Google Scholar 

  89. O’Boyle, K. M. and Waddington, J. L. (1987). New substituted 1-phenyl-3-benzazepine analogues of SKF 38393 and N-methyl-thienopyridine analogues of dihydroxynomifensine with selective affinity for the D-1 dopamine receptor in human post-mortem brain, Neuropharmacology, 26, 1807–1810

    Article  Google Scholar 

  90. Andersen, P. H., Nielsen, E. B., Scheel-Kruger, J., Jansen, J. A. and Hohlweg, R. (1987). Thienopyridine derivatives identified as the first selective, full efficacy, dopamine D1 receptor agonists, Eur. J. Pharmacol., 137, 291–292

    Article  Google Scholar 

  91. Manallack, D. T. and Beart, P. M. (1988). A three dimensional receptor model of the dopamine D2 receptor from computer graphic analyses of D2 agonists, J. Pharm. Pharmacol., 40, 422–428

    Article  Google Scholar 

  92. Mori, N., Ishihara, H., Matsuoka, T., Saito, M., Hoshiko, T., Yoneda, N., Susa, S., Yamanaka, M., Shino, M. and Hamano, S. (1990). Pharmacology of E4101, a novel selective and orally active DA-1 dopamine receptor agonist, Eur. J. Pharmacol., 183, 1049

    Article  Google Scholar 

  93. Kebabian, J. W., Briggs, C., Britton, D. R., Asin, K., DeNinno, M., Mac-Kenzie, R. G., McKelvy, J. F. and Schoenleber, R. (1990). A68930: a potent and specific agonist for the D-1 dopamine receptor, Am. J. Hypertension, 3, 40S–42S

    Google Scholar 

  94. DeNinno, M. P., Schoenleber, R., Asin, K. E., MacKenzie, R. and Kebabian, J. W. (1990). (1R,3S)-1-(Aminomethyl)-3,4-dihydro-5,6-dihydroxy-3-phenyl-1H-2-benzopyran: a potent and selective D1 agonist, J. Med. Chem., 33, 2948–2950

    Article  Google Scholar 

  95. DeNinno, M. P., Schoenleber, R., MacKenzie, R., Britton, D. R., Asin, K. E., Briggs, C., Trugman, J. M., Ackerman, M., Artman, L., Bednarz, L., Bhan, R., Curzon, P., Gomez, E., Kang, C. H., Stittsworth, J. and Kebabian, J. W. (1991). A68930: a potent agonist selective for the dopamine D1 receptor, Eur. J. Pharmacol., 199, 209–219

    Article  Google Scholar 

  96. Berger, J. G., Chang, W. K., Clader, J. W., Hou, D., Chipkin, R. E. and McPhail, A. T. (1989). Synthesis and receptor affinities of some conformationally restricted analogues of the dopamine D1 selective ligand (5R)-8-chloro-2,3,4,5-tetrahydro-3-methyl-5-phenyl-1H-3-benzazepin-7-ol, J. Med. Chem., 32, 1913–1921

    Article  Google Scholar 

  97. Ford, M. G. and Livingstone, D. J. (1990). Multivariate techniques for parameter selection and data analysis exemplified by a study of pyrethroid neurotoxicity, Quant. Struct.-Act. Relat., 9, 107–114

    Article  Google Scholar 

  98. Livingstone, D. J. (1989). Multivariate quantitative structure-activity relationship (QSAR) methods which may be applied to pesticide research, Pestic. Sci., 27, 287–304

    Article  Google Scholar 

  99. Esaki, T. (1980). Quantitative drug design studies. II. Development and application of new electronic substituent parameters, J. Pharmacobiodyn., 3, 562–576

    Article  Google Scholar 

  100. DeNinno, M. P., Schoenleber, R., Perner, R. J., Lijewski, L., Asin, K. E., Britton, D. R., MacKenzie, R. and Kebabian, J. W. (1991). Synthesis and dopaminergic activity of 3-substituted 1-(aminomethyl)-3,4-dihydro-5,6-dihydroxy-1H-2-benzopyrans: characterization of an auxiliary binding region in the D1 receptor, J. Med. Chem., 34, 2561–2569

    Article  Google Scholar 

  101. Ladd, D. L., Weinstock, J., Wise, M., Gessner, G. W., Sawyer, J. L. and Flaim, K. E. (1986). Synthesis and dopaminergic binding of 2-aryldopamine analogues: phenethylamines, 3-benzazepines, and 9-(aminomethyl)fluorenes, J. Med. Chem., 29, 1904–1912

    Article  Google Scholar 

  102. O’Boyle, K. M., Gaitanopoulos, D. E., Brenner, M. and Waddington, J. L. (1989). Agonist and antagonist properties of benzazepine and thienopyridine derivatives at the D1 dopamine receptor, Neuropharmacology, 28, 401–405

    Article  Google Scholar 

  103. Andersen, P. H. and Jansen, J. A. (1990). Dopamine receptor agonists: selectivity and dopamine D1 receptor efficacy, Eur. J. Pharmacol., 188, 335–347

    Article  Google Scholar 

  104. Iorio, L. C., Barnett, A., Billard, W. and Gold, E. H. (1986). Benzazepines: structure-activity relationships between D1 receptor blockade and selected pharmacological effects, Adv. Exp. Med. Biol., 204, 1–14

    Article  Google Scholar 

  105. Chumpradit, S., Kung, M. P. and Kung, H. F. (1991). New derivatives of SCH-23390 as CNS D-1 dopamine receptor ligands, J. Labelled Compd Radiopharm., 30, 347–348

    Article  Google Scholar 

  106. Dixon, R. A. F., Sigal, I. S., Rands, E., Register, R. B., Candelore, M. R., Blake, A. D. and Strader, C. D. (1987). Ligand binding to the β-adrenergic receptor involves its rhodopsin like core, Nature, 326, 73–77

    Article  Google Scholar 

  107. Strader, C. D., Candelore, M. R., Hill, W. S., Wigal, I. S. and Dixon, R. A. F. (1989). Identification of two serine residues involved in agonist activation of the β-adrenergic receptor, J. Biol. Chem., 264, 13572–13578

    Google Scholar 

  108. Wallace, R. A., Wallace, L., Harrold, M., Miller, D. and Uretsky, N. J. (1989). Interaction of permanently charged chlorpromazine and dopamine analogues with the striatal D-1 dopaminergic receptor, Biochem. Pharmacol., 38, 2019–2025

    Article  Google Scholar 

  109. Seiler, M. P., Markstein, R., Walkinshaw, M. D. and Boelsterli, J. J. (1989). Characterization of dopamine receptor subtypes of comparative structure-activity relationships: dopaminomimetic activities and solid state conformation of monohydroxy-1,2,3,4,4a,5,10,10a-octahydrobenz[g]quinolines and its implications for a rotamer-based dopamine receptor model, Mol. Pharmacol., 35, 643–651

    Google Scholar 

  110. Liljefors, T. and Wikstrom, H. (1986). A molecular mechanics approach to the understanding of presynaptic selectivity for centrally acting dopamine receptor agonists of the phenylpiperidine series, J. Med. Chem., 29, 1896–1904

    Article  Google Scholar 

  111. Michaelides, M. R., Schoenleber, R., Thomas, S., Yamamoto, D. M., Britton, D. R., MacKenzie, R. and Kebabian, J. W. (1991). Synthesis and pharmacological evaluation of 1-(aminomethyl)-3,4-dihydro-5-hydroxy-1H-2-benzopyrans as dopamine D1 selective ligands, J. Med. Chem., 34, 2946–2953

    Article  Google Scholar 

  112. Schaus, J. M., Titus, R. D., Foreman, M. M., Mason, N. R. and Truex, L. L. (1990). Aporphines as antagonists of dopamine D-1 receptors, J. Med. Chem., 33, 600–607

    Article  Google Scholar 

  113. Weinstock, J., Gaitanopoulos, D. E., Stringer, O. D., Franz, R. G., Hieble, J. P., Kinter, L. B., Mann, W. A., Flaim, K. E. and Gessner, G. (1987). Synthesis and evaluation of non-catechol D-1 and D-2 dopamine receptor agonists: benzimidazol-2-one, benzoxazol-2-one, and the highly potent benzothiazolo-2-one-7-ethylamines, J. Med. Chem., 30, 1166–1176

    Article  Google Scholar 

  114. Weinstein, H. and Osman, R. (1990). On the structural and mechanistic basis of function, classification, and ligand design for 5-HT receptors, Neuropsychopharmacology, 3, 397–409

    Google Scholar 

  115. Jorgensen, W. L. (1991). Rusting of the lock and key model for protein-ligand binding, Science, 254, 954–955

    Article  Google Scholar 

  116. Henderson, R. and Unwin, P. N. (1975). Three-dimensional model of purple membrane obtained by electron microscopy, Nature, 257, 28–32

    Article  Google Scholar 

  117. Henderson, R., Baldwin, J., Ceska, T. H., Zemlin, F., Beckmann, E. and Downing, K. (1990). Model for the structure of bacteriorhodopsin based on high resolution electron cryomicroscopy, J. Mol. Biol., 213, 899–929

    Article  Google Scholar 

  118. Beart, P. M. (1989). Dopamine receptors: classification, properties and drug development, Clin. Exp. Pharmacol. Physiol., 16, 511–515

    Article  Google Scholar 

  119. Lieberman, A. N., Goldstein, M., Gopinathan, G. and Neophytides, A. (1987). D-1 and D-2 agonists in Parkinson’s disease, Can. J. Neurol. Sci., 14, 466–473

    Google Scholar 

  120. Mailman, R. B., Schultz, D. W., Lewis, M. H., Staples, L., Rollema, H. and De Haven, D. L. (1984). SCH 23390: A selective D-1 dopamine antagonist with potent D-2 behavioural actions, Eur. J. Pharmacol., 101, 159–160

    Article  Google Scholar 

  121. Delfs, J. M. and Kelley, A. E. (1990). The role of D1 and D2 dopamine receptors in oral stereotypy induced by dopaminergic stimulation of the ventrolateral striatum, Neuroscience, 39, 59–67

    Article  Google Scholar 

  122. Creese, I. and Fraser, C. M. (Eds.) (1987). Dopamine Receptors, Alan R. Liss, New York

    Google Scholar 

  123. Kelly, E. and Nahorski, S. R. (1987). Endogenous dopamine functionally activates D-1 and D-2 receptors in striatum, J. Neurochem., 49, 115–120

    Article  Google Scholar 

  124. White, F. J. (1987). D-1 dopamine receptor stimulation enables the inhibition of nucleus accumbens neurons by a D-2 receptor agonist, Eur. J. Pharmacol., 135, 101–105

    Article  Google Scholar 

  125. Barone, P., Braum, A. R. and Chase, T. N. (1986). D1/D2 dopamine receptor interactions in the regulation of extrapyramidal motor function: Studies in animal models and Parkinsonian patients, Clin. Neuropharmacol. (Suppl. 4), 128–130

    Google Scholar 

  126. Taylor, J. R., Lawrence, M. S., Redmond, D. E., Elsworth, J. D., Roth, R. H., Nichols, D. E. and Mailman, R. B. (1991). Dihydrexidine, a full dopamine D1 agonist, reduces MPTP-induced Parkinsonism in monkeys, Eur. J. Pharmacol., 199, 389–391

    Article  Google Scholar 

  127. Marshall, G. R. and Naylor, C. B. (1990). Use of molecular graphics for structural analysis of small molecules. In Comprehensive Medicinal Chemistry, Vol. 4, ed. Hansch, C., Sammes, P. G., Taylor, J. B. and Ramsden, C. A., Pergamon Press, Oxford, pp. 431–458

    Google Scholar 

  128. Cramer, R. D. III, Patterson, D. E. and Bunce, J. D. (1988). Comparative molecular field analysis (CoMFA). 1. Effect of shape on binding of steroids to carrier proteins, J. Am. Chem. Soc., 110, 5959–5967

    Article  Google Scholar 

  129. Frisch, M. J., Head-Gordon, M., Trucks, G. W., Foresman, J. B., Schlegel, H. B., Raghavachari, K., Robb, M. A., Binkley, J. S., Gonzalez, C., Defrees, D. J., Fox, D. J., Whiteside, R. A., Seeger, R., Melius, C. F., Baker, J., Martin, R. L., Kahn, L. R., Stewart, J. J. P., Topiol, S. and Pople, J. A. (1990). Gaussian, Inc., Pittsburg, PA

    Google Scholar 

  130. Mezei, M. and Beveridge, D. L. (1986). Free energy simulations. In Computer Simulation of Chemical and Biomolecular Systems, ed. Beveridge, D. L. and Jorgensen, W. L., Ann. N.Y. Acad. Sci., 482, 1–23

    Google Scholar 

Download references

Authors

Editor information

J. G. Vinter Mark Gardner

Copyright information

© 1994 J. G. Vinter and M. Gardner

About this chapter

Cite this chapter

Manallack, D.T. (1994). Multivariate QSAR and Computational Chemistry: A Novel Receptor Model of the D1 Agonist Binding Site. In: Vinter, J.G., Gardner, M. (eds) Molecular Modelling and Drug Design. Topics in Molecular and Structural Biology. Palgrave, London. https://doi.org/10.1007/978-1-349-12973-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-349-12973-7_9

  • Publisher Name: Palgrave, London

  • Print ISBN: 978-1-349-12975-1

  • Online ISBN: 978-1-349-12973-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics