Study of Protein Dynamics by NMR

  • Gerhard Wagner
  • Sven Hyberts
  • Jeffrey W. Peng
Part of the Topics in Molecular and Structural Biology book series (TMSB)


The three-dimensional structure of globular proteins is responsible for their biological activity, since it arranges crucial side-chains, prosthetic groups or cofactors in a way to make the protein functional. Owing to the fact that most proteins work at ambient temperature, they have some internal mobility. It is not immediately obvious whether this interferes with or enhances protein function. Some internal mobility may be important for protein function; other kinds of mobility may be irrelevant. Generally, most parts of protein structures are not directly relevant for protein function, since only small surface patches or enzyme cavities constitute the active sites. Most of the regular secondary structures seem to be relatively rigid. They provide the scaffold to present the functional groups to target molecules. In many cases, the functional sites are located at regions of irregular secondary structure, on external loops, or even on disordered sites. Therefore, there seems to be a general tendency that functional sites have higher mobility than the scaffold of the protein. Moreover, many proteins undergo significant structural changes when they do their work. This is the case for many enzymes when they interact with substrates or inhibitors, or for nucleotide-binding proteins when they dock to DNA or RNA. Thus, mobility may be necessary for proteins to be adaptable to target molecules.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abragam, A. (1961). The Principles of Nuclear Magnetism. Clarendon Press, OxfordGoogle Scholar
  2. Allerhand, A., Doddrell, D., Glushko, V., Cochran, D. W., Wenkert, E., Lawson, P. J. and Gurd, F. R. N. (1971). Conformation and segmental motion of native and denatured ribonuclease A in solution. Application of natural-abundance carbon-13 partially relaxed Fourier transform nuclear magnetic resonance. J. Am. Chem. Soc., 93, 544–546CrossRefGoogle Scholar
  3. Barbato, G., Ikura, M., Kay, L. E., Pastor, R. W. and Bax, A. (1992). Backbone dynamics of calmodulin studied by 15N relaxation using inverse detected two-dimensional NMR spectroscopy: The central helix is flexible. Biochem-istry, 31, 5269–5278CrossRefGoogle Scholar
  4. Bax, A., Ikura, M., Kay, L. E., Torchia, D. A. and Tschudin, R. (1990). Comparison of different modes of two-dimensional reverse-correlation NMR for the study of proteins. J. Magn. Reson., 86, 304–318Google Scholar
  5. Billeter, M., Kline, A., Braun, W., Huber, R. and Wüthrich, K. (1989). Comparison of the high-resolution structure of the α-amylase inhibitor tendamistat determined by nuclear magnetic resonance in solution and by X-ray diffraction in single crystals. J. Mol. Biol., 206, 677–687CrossRefGoogle Scholar
  6. Bode, W., Papamokos, E. and Musil, D. (1987). The high-resolution X-ray crystal structure of the complex formed between subtilisin Carlsberg and eglin c, and elastate inhibitor from the leech Hirudo medicinalis. Eur. J. Biochem., 166, 673–692CrossRefGoogle Scholar
  7. Boyd, J., Hommel, U. and Campbell, I. D. (1990). Influence of cross-correlation between dipolar and anisotropic chemical shift relaxation mechanisms upon longitudinal relaxation rates of 15N in macromolecules. Chem. Phys. Lett., 175, 477–482CrossRefGoogle Scholar
  8. Brüschweiler, R. and Ernst, R. R. (1992). Molecular dynamics monitored by cross-correlated cross relaxation of spins quantized along orthogonal axes. J. Chem. Phys., 96, 1758–1766CrossRefGoogle Scholar
  9. Brüschweiler, R., Roux, B., Blackledge, M., Griesinger, C., Karplus, M. and Ernst, R. R. (1992). Influence of rapid intramolecular motion on NMR cross-relaxation rates. A molecular dynamics study of antamanide in solution. J. Am. Chem. Soc., 114, 2289–2302CrossRefGoogle Scholar
  10. Bystrov, V. F. (1976). Spin-spin coupling and the conformational states of peptide systems. Prog. NMR Spectrosc., 10, 41–81CrossRefGoogle Scholar
  11. Campbell, I. D., Dobson, C. M., Moore, G. R., Perkins, S. J. and Williams, R. J. P. (1976). Temperature dependent molecular motion of a tyrosine residue of ferrocytochrome C. FEBS Lett., 70, 96–100CrossRefGoogle Scholar
  12. Canet, D. (1989). Construction, evolution and detection of magnetization modes designed for treating longitudinal relaxation of weakly coupled spin 1/2 systems with magnetic equivalence. Prog. NMR Spectrosc., 21, 237–291CrossRefGoogle Scholar
  13. Carr, H. Y. and Purcell, E. M. (1954). Effects of diffusion on free precession in nuclear magnetic resonance experiments. Phys. Rev., 94, 630–638CrossRefGoogle Scholar
  14. Clore, G. M., Driscoll, P. C., Wingfield, P. T. and Gronenborn, A. (1990a). Analysis of the backbone dynamics of interleukin-1 ß using two-dimensional inverse detected heteronuclear 15N–1H NMR spectroscopy. Biochemistry, 29, 7387–7401CrossRefGoogle Scholar
  15. Clore, G. M. and Gronenborn, A. M. (1991). Comparison of the solution nuclear magnetic resonance and crystal structure of interleukin-8. Possible implications for the mechanism of receptor binding. J. Mol. Biol., 217, 611–620CrossRefGoogle Scholar
  16. Clore, G. M., Szabo, A., Bax, A., Kay, L. E., Driscoll, P. C. and Gronenborn, A. (1990b). Deviations from the simple two-parameter model-free approach to the interpretation of nitrogen-15 nuclear magnetic relaxation of proteins. J. Am. Chem. Soc., 112, 4989–4991CrossRefGoogle Scholar
  17. Debye, P. (1914). Interferenz von Röntgenstrahlen und Wärmebewegung. Ann. Phys., 43, 49–95Google Scholar
  18. Dellwo, M. J. and Wand, A. J. (1989). Model-independent and model-dependent analysis of the global and internal dynamics of cyclosporin A. J. Am. Chem. Soc., 111, 4571–4578CrossRefGoogle Scholar
  19. Deverell, C., Morgan, R. E. and Strange, J. H. (1970). Studies of chemical exchange by nuclear magnetic relaxation in the rotating frame. Mol. Phys., 18, 553–559CrossRefGoogle Scholar
  20. Ernst, R. R., Bodenhausen, G. and Wokaun, A. (1987). Principles of Nuclear Magnetic Resonance in One and Two Dimensions. Oxford University Press, OxfordGoogle Scholar
  21. Goldman, M. (1984). Interference effects in the relaxation of a pair of unlike spin-1/2 nuclei. J. Magn. Reson., 60, 437–452Google Scholar
  22. Goldman, M. (1988). Quantum Description of High-resolution NMR in Liquids. Clarendon Press, OxfordGoogle Scholar
  23. Gros, P., Betzel, C., Dauter, Z., Wilson, K. S. and Hol, W. G. J. (1989). Molecular dynamics refinement of a thermistase-eglin-c complex at 1.98 Å resolution and comparison of two crystal forms that differ in calcium content. J. Mol. Biol., 210, 347–367CrossRefGoogle Scholar
  24. Havel, T. F. (1991). An evaluation of computational strategies for use in the determination of protein structure from distance constraints obtained by nuclear magnetic resonance. Prog. Biophys. Mol. Biol., 56, 43–78CrossRefGoogle Scholar
  25. Heinz, D. W., Priestle, J. P., Rahuel, J., Wilson, K. S. and Grütter, M. G. (1991). Changing the inhibitory specificity and function of the proteinase inhibitor eglin c by site-directed mutagenesis: Functional and structural investigation. J. Mol. Biol., 217, 353–371CrossRefGoogle Scholar
  26. Hirs, C. H. W. and Timasheff, S. N. (1986). Structural dynamics and mobility of proteins. Meth. Enzymol., 131, 283–607CrossRefGoogle Scholar
  27. Hiyama, Y., Niu, C., Silverton, J. V., Bavoso, A. and Torchia, D. A. (1988). Determination of 15C chemical shift tensor via 15N–2H dipolar coupling in Boc-glycylglycyl[15N]glycine benzyl ester. J. Am. Chem. Soc., 110, 2378–2383CrossRefGoogle Scholar
  28. Hoch, J. C., Dobson, C. M. and Karplus, M. (1985). Vicinal coupling constants and protein dynamics. Biochemistry, 24, 3831–3841CrossRefGoogle Scholar
  29. Hyberts, S. G., Goldberg, M. S., Havel, T. F. and Wagner, G. (1992). The solution structure of eglin c based on measurements of many NOEs and coupling constants and its comparison with X-ray structures. Protein Sci. (in press)Google Scholar
  30. Hyberts, S. G., Peng, J. W. and Wagner, G. (1993). Comparison of structure variations and mobility in the NMR solution structure of eglin c with the crystal structure based on coordinates and B-factors. J. Mol. Biol., (submitted)Google Scholar
  31. Kay, L. E., Nicholson, L. K., Delaglio, F., Bax, A. and Torchia, D. A. (1992). The effects of cross-correlation between dipolar and chemical shift anisotropy relaxation mechanisms on the measurement of heteronuclear T 1 and T 2 values in proteins: Pulse sequences for the removal of such effects. J. Magn. Reson., 97, 359–375Google Scholar
  32. Kay, L. E., Torchia, D. A. and Bax, A. (1989). Backbone dynamics of proteins as studied by 15N inverse detected heteronuclear NMR spectroscopy: Application to staphylococcal nuclease. Biochemistry, 28, 8972–8979CrossRefGoogle Scholar
  33. Keiter, E. A. (1986). PhD Thesis, University of IllinoisGoogle Scholar
  34. King, R. and Jardetzky, O. (1978). A general formalism for the analysis of NMR relaxation measurements on systems with multiple degress of freedom. J. Chem. Phys. Lett., 55, 15–18CrossRefGoogle Scholar
  35. King, R., Maas, R., Gassner, M., Nanda, R. K., Conover, W. W. and Jardetzky, O. (1978). Magnetic relaxation analysis of dynamics processes in macromolecules in the pico- to microsecond range. Biophys. J., 6, 103–117CrossRefGoogle Scholar
  36. Kinoshita, K., Kawato, W., Jr. and Ikegami, A. (1977). A theory of fluorescence polarization decay in membranes. Biophys. J., 20, 289CrossRefGoogle Scholar
  37. Kördel, J., Skelton, N. J., Akke, M., Palmer, A. G. and Chazin, W. J. (1992). Backbone dynamics of calcium-loaded calbindin D9k studied by two-dimensional proton-detected 15N NMR spectroscopy. Biochemistry, 31, 4856–4866CrossRefGoogle Scholar
  38. Linderstrøm-Lang, K. and Schellman, J. A. (1959). Protein structure and enzyme activity. In Boyer, P. D. (Ed.), The Enzymes, Vol. 1. New York, Academic Press, 443–510Google Scholar
  39. Lipari, G. and Szabo A. (1982a). Model-free approach to the interpretation of nuclear magnetic resonance relaxation in macromolecules. 1. Theory and range of validity. J. Am. Chem. Soc., 104, 4546–4559CrossRefGoogle Scholar
  40. Lipari, G. and Szabo A. (1982b). Model-free approach to the interpretation of nuclear magnetic resonance relaxation in macromolecules. 2. Analysis of experimental results. J. Am. Chem. Soc., 104, 4559–4570CrossRefGoogle Scholar
  41. McPhalen, C. A. and James, M. N. C. (1988). Structural comparison of two serine proteinase-protein inhibitor complexes: eglin-c-subtilisin Carlsberg and CI-2-subtilisin Novo. Biochemistry, 27, 6582–6598CrossRefGoogle Scholar
  42. Meiboom, S. and Gill, D. (1958). Modified spin-echo method for measuring nuclear relaxation times. Rev. Sci. Instrum., 29, 688–691CrossRefGoogle Scholar
  43. Montelione, G. T., Winkler, M. E., Rauenbuehler, P. and Wagner, G. (1989). Accurate measurements of long-range heteronuclear coupling constants from homonuclear 2D NMR spectra of isotope-enriched proteins. J. Magn. Reson., 82, 198–204Google Scholar
  44. Morris, G. A. and Freeman, R. (1979). Enhancement of nuclear magnetic resonance signals by polarization transfer. J. Am. Chem. Soc., 101, 760–762CrossRefGoogle Scholar
  45. Nagayama, K. and Wüthrich, K. (1981). Structural interpretation of vicinal proton-proton coupling constants 3JHαHβ in the basic pancreatic trypsin inhibitor measured by two-dimensional J-resolved NMR spectroscopy. Eur. J. Biochem., 115, 653–657Google Scholar
  46. Nirmala, N. R. and Wagner, G. (1988). Measurements of 13C relaxation times in proteins by two-dimensional heteronuclear 1H–13C correlation spectroscopy. J. Am. Chem. Soc., 110, 7557–7558CrossRefGoogle Scholar
  47. Nirmala, N. R. and Wagner, G. (1989). Measurement of 13C spin-spin relaxation times by two-dimensional heteronuclear 1H–13C correlation spectroscopy. J. Magn. Reson., 82, 659–661Google Scholar
  48. Noggle, J. H. and Schirmer, R. E. (1971). The Nuclear Overhauser Effect. Academic Press, New YorkGoogle Scholar
  49. Palmer, A. G., III, Skelton, N. J., Chazin, W. J., Wright, P. E. and Rance, M. (1992). Suppression of the effects of cross-correlation between dipolar and anisotropic chemical shift relaxation mechanisms in the measurement of spin-spin relaxation rates. Mol. Phys., 75, 699–711CrossRefGoogle Scholar
  50. Peng, J. W., Thanabal, V. and Wagner, G. (1991a). 2D heteronuclear NMR measurements of spin-lattice relaxation times in the rotating frame of X nuclei in heteronuclear HX spin systems. J. Magn. Reson., 94, 82–100Google Scholar
  51. Peng, J. W., Thanabal, V. and Wagner, G. (1991b). Improved accuracy of heteronuclear transverse relaxation time measurements in macromolecules: Elimination of antiphase contributions. J. Magn. Reson., 95, 421–427Google Scholar
  52. Peng, J. W. and Wagner, G. (1992a). Mapping of spectral density functions using heteronuclear NMR relaxation measurements. J. Magn. Reson., 98, 308–332Google Scholar
  53. Peng, J. W. and Wagner, G. (1992b). Mapping of spectral densities of N–H bond motions in eglin c using heteronuclear relaxation experiments. Biochemistry (in press)Google Scholar
  54. Ponder, J. and Richards, F. M. (1987). Tertiary templates for proteins: Use of packing criteria in the enumeration of allowed sequences for different structural classes. J. Mol. Biol., 193, 775–791CrossRefGoogle Scholar
  55. Redfield, A. G. (1965). The theory of relaxation processes. Adv. Magn. Reson., 1, 1CrossRefGoogle Scholar
  56. Ribeiro, A. A., King, R., Restivo, C. and Jardetzky, O. (1980). An approach to the mapping of internal motions in proteins. Analysis of 13C NMR relaxation in the bovine pancreatic trypsin inhibitor. J. Am. Chem. Soc., 102, 4040–4051CrossRefGoogle Scholar
  57. Richards, F. M. (1974). The interpretation of protein structures: Total volume, group volume distributions and packing density. J. Mol. Biol., 82, 1–14CrossRefGoogle Scholar
  58. Richarz, R., Nagayama, K. and Wüthrich, K. (1980). Carbon-13 nuclear magnetic resonance relaxation studies of internal mobility of the polypeptide chain in basic pancreatic trypsin inhibitor and a selectively reduced analogue. Biochemistry, 19, 5189–5196CrossRefGoogle Scholar
  59. Schneider, D. M., Dellwo, M. and Wand, A. J. (1992). Fast internal main-chain dynamics of human ubiquitin. Biochemistry, 31, 3645–3652CrossRefGoogle Scholar
  60. Solomon, I. (1955). Relaxation processes in a system of two spins. Phys. Rev., 99, 559–565CrossRefGoogle Scholar
  61. Stone, M. J., Fairbrother, W. J., Palmer, A. G., Reizer, J., Saier, M. H. and Wright, P. E. (1992). Backbone dynamics of the Bacillus subtilis glucose permease IIA domain determined from 15N relaxation measurements. Biochemistry, 31, 4394–4406CrossRefGoogle Scholar
  62. Vold, R. L. and Vold, R. R. (1978). Nuclear magnetic relaxation in coupled spin systems. Prog. NMR Spectrosc., 12, 79–133CrossRefGoogle Scholar
  63. Wagner, G. (1983). Characterization of the distribution of internal motions in the basic pancreatic trypsin inhibitor using a large number of internal NMR probes. Quart. Rev. Biophys., 16, 1–57CrossRefGoogle Scholar
  64. Wagner, G. (1990). NMR investigations of protein structure. Prog. NMR Spectrosc., 22, 101–139CrossRefGoogle Scholar
  65. Wagner, G., Hyberts, S. G. and Havel, T. F. (1992). NMR structure determination in solution: a critique and comparison with X-ray crystallography. Ann. Rev. Biophys. Biomol. Struct., 21, 167–198CrossRefGoogle Scholar
  66. Werbelow, L. G. and Grant, D. M. (1977). Intramolecular dipolar relaxation in multispin systems. In Waugh, J. S. (Ed.), Advances in Magnetic Resonance, Vol. 9. Academic Press, San Diego, pp. 189–299Google Scholar
  67. Wittebort, R. J. and Szabo A. (1978). Theory of NMR relaxation in macromolecules: Restricted diffusion and jump models for multiple internal rotations in amino acid side chains. J. Chem. Phys., 69, 1723–1736CrossRefGoogle Scholar
  68. Woessner, D. E. (1962). Spin relaxation processes in a two-proton system undergoing anisotropic reorientation. J. Chem. Phys., 36, 1–4CrossRefGoogle Scholar
  69. Woodward, C. K. and Hilton, B. D. (1980). Hydrogen isotope exchange kinetics of single protons in bovine pancreatic trypsin inhibitor. Biophys. J., 32, 561–575CrossRefGoogle Scholar
  70. Wüthrich, K. (1986). NMR of Proteins and Nucleic Acids. Wiley, New YorkGoogle Scholar
  71. Wüthrich, K. and Wagner, G. (1975). NMR investigations of the dynamics of the aromatic amino acid residues in the basic pancreatic trypsin inhibitor. FEBS Lett., 50, 265–268CrossRefGoogle Scholar
  72. Wüthrich, K. and Wagner, G. (1978). Internal motions in globular proteins. Trends Biochem. Sci., 3, 227–230CrossRefGoogle Scholar
  73. Zare, R. N. (1988). Angular Momentum. Wiley, New YorkGoogle Scholar

Copyright information

© The contributors 1993

Authors and Affiliations

  • Gerhard Wagner
  • Sven Hyberts
  • Jeffrey W. Peng

There are no affiliations available

Personalised recommendations