Skip to main content

Study of Protein Dynamics by NMR

  • Chapter
NMR of Proteins

Part of the book series: Topics in Molecular and Structural Biology ((TMSB))

Abstract

The three-dimensional structure of globular proteins is responsible for their biological activity, since it arranges crucial side-chains, prosthetic groups or cofactors in a way to make the protein functional. Owing to the fact that most proteins work at ambient temperature, they have some internal mobility. It is not immediately obvious whether this interferes with or enhances protein function. Some internal mobility may be important for protein function; other kinds of mobility may be irrelevant. Generally, most parts of protein structures are not directly relevant for protein function, since only small surface patches or enzyme cavities constitute the active sites. Most of the regular secondary structures seem to be relatively rigid. They provide the scaffold to present the functional groups to target molecules. In many cases, the functional sites are located at regions of irregular secondary structure, on external loops, or even on disordered sites. Therefore, there seems to be a general tendency that functional sites have higher mobility than the scaffold of the protein. Moreover, many proteins undergo significant structural changes when they do their work. This is the case for many enzymes when they interact with substrates or inhibitors, or for nucleotide-binding proteins when they dock to DNA or RNA. Thus, mobility may be necessary for proteins to be adaptable to target molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abragam, A. (1961). The Principles of Nuclear Magnetism. Clarendon Press, Oxford

    Google Scholar 

  • Allerhand, A., Doddrell, D., Glushko, V., Cochran, D. W., Wenkert, E., Lawson, P. J. and Gurd, F. R. N. (1971). Conformation and segmental motion of native and denatured ribonuclease A in solution. Application of natural-abundance carbon-13 partially relaxed Fourier transform nuclear magnetic resonance. J. Am. Chem. Soc., 93, 544–546

    Article  Google Scholar 

  • Barbato, G., Ikura, M., Kay, L. E., Pastor, R. W. and Bax, A. (1992). Backbone dynamics of calmodulin studied by 15N relaxation using inverse detected two-dimensional NMR spectroscopy: The central helix is flexible. Biochem-istry, 31, 5269–5278

    Article  Google Scholar 

  • Bax, A., Ikura, M., Kay, L. E., Torchia, D. A. and Tschudin, R. (1990). Comparison of different modes of two-dimensional reverse-correlation NMR for the study of proteins. J. Magn. Reson., 86, 304–318

    Google Scholar 

  • Billeter, M., Kline, A., Braun, W., Huber, R. and Wüthrich, K. (1989). Comparison of the high-resolution structure of the α-amylase inhibitor tendamistat determined by nuclear magnetic resonance in solution and by X-ray diffraction in single crystals. J. Mol. Biol., 206, 677–687

    Article  Google Scholar 

  • Bode, W., Papamokos, E. and Musil, D. (1987). The high-resolution X-ray crystal structure of the complex formed between subtilisin Carlsberg and eglin c, and elastate inhibitor from the leech Hirudo medicinalis. Eur. J. Biochem., 166, 673–692

    Article  Google Scholar 

  • Boyd, J., Hommel, U. and Campbell, I. D. (1990). Influence of cross-correlation between dipolar and anisotropic chemical shift relaxation mechanisms upon longitudinal relaxation rates of 15N in macromolecules. Chem. Phys. Lett., 175, 477–482

    Article  Google Scholar 

  • Brüschweiler, R. and Ernst, R. R. (1992). Molecular dynamics monitored by cross-correlated cross relaxation of spins quantized along orthogonal axes. J. Chem. Phys., 96, 1758–1766

    Article  Google Scholar 

  • Brüschweiler, R., Roux, B., Blackledge, M., Griesinger, C., Karplus, M. and Ernst, R. R. (1992). Influence of rapid intramolecular motion on NMR cross-relaxation rates. A molecular dynamics study of antamanide in solution. J. Am. Chem. Soc., 114, 2289–2302

    Article  Google Scholar 

  • Bystrov, V. F. (1976). Spin-spin coupling and the conformational states of peptide systems. Prog. NMR Spectrosc., 10, 41–81

    Article  Google Scholar 

  • Campbell, I. D., Dobson, C. M., Moore, G. R., Perkins, S. J. and Williams, R. J. P. (1976). Temperature dependent molecular motion of a tyrosine residue of ferrocytochrome C. FEBS Lett., 70, 96–100

    Article  Google Scholar 

  • Canet, D. (1989). Construction, evolution and detection of magnetization modes designed for treating longitudinal relaxation of weakly coupled spin 1/2 systems with magnetic equivalence. Prog. NMR Spectrosc., 21, 237–291

    Article  Google Scholar 

  • Carr, H. Y. and Purcell, E. M. (1954). Effects of diffusion on free precession in nuclear magnetic resonance experiments. Phys. Rev., 94, 630–638

    Article  Google Scholar 

  • Clore, G. M., Driscoll, P. C., Wingfield, P. T. and Gronenborn, A. (1990a). Analysis of the backbone dynamics of interleukin-1 ß using two-dimensional inverse detected heteronuclear 15N–1H NMR spectroscopy. Biochemistry, 29, 7387–7401

    Article  Google Scholar 

  • Clore, G. M. and Gronenborn, A. M. (1991). Comparison of the solution nuclear magnetic resonance and crystal structure of interleukin-8. Possible implications for the mechanism of receptor binding. J. Mol. Biol., 217, 611–620

    Article  Google Scholar 

  • Clore, G. M., Szabo, A., Bax, A., Kay, L. E., Driscoll, P. C. and Gronenborn, A. (1990b). Deviations from the simple two-parameter model-free approach to the interpretation of nitrogen-15 nuclear magnetic relaxation of proteins. J. Am. Chem. Soc., 112, 4989–4991

    Article  Google Scholar 

  • Debye, P. (1914). Interferenz von Röntgenstrahlen und Wärmebewegung. Ann. Phys., 43, 49–95

    Google Scholar 

  • Dellwo, M. J. and Wand, A. J. (1989). Model-independent and model-dependent analysis of the global and internal dynamics of cyclosporin A. J. Am. Chem. Soc., 111, 4571–4578

    Article  Google Scholar 

  • Deverell, C., Morgan, R. E. and Strange, J. H. (1970). Studies of chemical exchange by nuclear magnetic relaxation in the rotating frame. Mol. Phys., 18, 553–559

    Article  Google Scholar 

  • Ernst, R. R., Bodenhausen, G. and Wokaun, A. (1987). Principles of Nuclear Magnetic Resonance in One and Two Dimensions. Oxford University Press, Oxford

    Google Scholar 

  • Goldman, M. (1984). Interference effects in the relaxation of a pair of unlike spin-1/2 nuclei. J. Magn. Reson., 60, 437–452

    Google Scholar 

  • Goldman, M. (1988). Quantum Description of High-resolution NMR in Liquids. Clarendon Press, Oxford

    Google Scholar 

  • Gros, P., Betzel, C., Dauter, Z., Wilson, K. S. and Hol, W. G. J. (1989). Molecular dynamics refinement of a thermistase-eglin-c complex at 1.98 Ã… resolution and comparison of two crystal forms that differ in calcium content. J. Mol. Biol., 210, 347–367

    Article  Google Scholar 

  • Havel, T. F. (1991). An evaluation of computational strategies for use in the determination of protein structure from distance constraints obtained by nuclear magnetic resonance. Prog. Biophys. Mol. Biol., 56, 43–78

    Article  Google Scholar 

  • Heinz, D. W., Priestle, J. P., Rahuel, J., Wilson, K. S. and Grütter, M. G. (1991). Changing the inhibitory specificity and function of the proteinase inhibitor eglin c by site-directed mutagenesis: Functional and structural investigation. J. Mol. Biol., 217, 353–371

    Article  Google Scholar 

  • Hirs, C. H. W. and Timasheff, S. N. (1986). Structural dynamics and mobility of proteins. Meth. Enzymol., 131, 283–607

    Article  Google Scholar 

  • Hiyama, Y., Niu, C., Silverton, J. V., Bavoso, A. and Torchia, D. A. (1988). Determination of 15C chemical shift tensor via 15N–2H dipolar coupling in Boc-glycylglycyl[15N]glycine benzyl ester. J. Am. Chem. Soc., 110, 2378–2383

    Article  Google Scholar 

  • Hoch, J. C., Dobson, C. M. and Karplus, M. (1985). Vicinal coupling constants and protein dynamics. Biochemistry, 24, 3831–3841

    Article  Google Scholar 

  • Hyberts, S. G., Goldberg, M. S., Havel, T. F. and Wagner, G. (1992). The solution structure of eglin c based on measurements of many NOEs and coupling constants and its comparison with X-ray structures. Protein Sci. (in press)

    Google Scholar 

  • Hyberts, S. G., Peng, J. W. and Wagner, G. (1993). Comparison of structure variations and mobility in the NMR solution structure of eglin c with the crystal structure based on coordinates and B-factors. J. Mol. Biol., (submitted)

    Google Scholar 

  • Kay, L. E., Nicholson, L. K., Delaglio, F., Bax, A. and Torchia, D. A. (1992). The effects of cross-correlation between dipolar and chemical shift anisotropy relaxation mechanisms on the measurement of heteronuclear T 1 and T 2 values in proteins: Pulse sequences for the removal of such effects. J. Magn. Reson., 97, 359–375

    Google Scholar 

  • Kay, L. E., Torchia, D. A. and Bax, A. (1989). Backbone dynamics of proteins as studied by 15N inverse detected heteronuclear NMR spectroscopy: Application to staphylococcal nuclease. Biochemistry, 28, 8972–8979

    Article  Google Scholar 

  • Keiter, E. A. (1986). PhD Thesis, University of Illinois

    Google Scholar 

  • King, R. and Jardetzky, O. (1978). A general formalism for the analysis of NMR relaxation measurements on systems with multiple degress of freedom. J. Chem. Phys. Lett., 55, 15–18

    Article  Google Scholar 

  • King, R., Maas, R., Gassner, M., Nanda, R. K., Conover, W. W. and Jardetzky, O. (1978). Magnetic relaxation analysis of dynamics processes in macromolecules in the pico- to microsecond range. Biophys. J., 6, 103–117

    Article  Google Scholar 

  • Kinoshita, K., Kawato, W., Jr. and Ikegami, A. (1977). A theory of fluorescence polarization decay in membranes. Biophys. J., 20, 289

    Article  Google Scholar 

  • Kördel, J., Skelton, N. J., Akke, M., Palmer, A. G. and Chazin, W. J. (1992). Backbone dynamics of calcium-loaded calbindin D9k studied by two-dimensional proton-detected 15N NMR spectroscopy. Biochemistry, 31, 4856–4866

    Article  Google Scholar 

  • Linderstrøm-Lang, K. and Schellman, J. A. (1959). Protein structure and enzyme activity. In Boyer, P. D. (Ed.), The Enzymes, Vol. 1. New York, Academic Press, 443–510

    Google Scholar 

  • Lipari, G. and Szabo A. (1982a). Model-free approach to the interpretation of nuclear magnetic resonance relaxation in macromolecules. 1. Theory and range of validity. J. Am. Chem. Soc., 104, 4546–4559

    Article  Google Scholar 

  • Lipari, G. and Szabo A. (1982b). Model-free approach to the interpretation of nuclear magnetic resonance relaxation in macromolecules. 2. Analysis of experimental results. J. Am. Chem. Soc., 104, 4559–4570

    Article  Google Scholar 

  • McPhalen, C. A. and James, M. N. C. (1988). Structural comparison of two serine proteinase-protein inhibitor complexes: eglin-c-subtilisin Carlsberg and CI-2-subtilisin Novo. Biochemistry, 27, 6582–6598

    Article  Google Scholar 

  • Meiboom, S. and Gill, D. (1958). Modified spin-echo method for measuring nuclear relaxation times. Rev. Sci. Instrum., 29, 688–691

    Article  Google Scholar 

  • Montelione, G. T., Winkler, M. E., Rauenbuehler, P. and Wagner, G. (1989). Accurate measurements of long-range heteronuclear coupling constants from homonuclear 2D NMR spectra of isotope-enriched proteins. J. Magn. Reson., 82, 198–204

    Google Scholar 

  • Morris, G. A. and Freeman, R. (1979). Enhancement of nuclear magnetic resonance signals by polarization transfer. J. Am. Chem. Soc., 101, 760–762

    Article  Google Scholar 

  • Nagayama, K. and Wüthrich, K. (1981). Structural interpretation of vicinal proton-proton coupling constants 3JHαHβ in the basic pancreatic trypsin inhibitor measured by two-dimensional J-resolved NMR spectroscopy. Eur. J. Biochem., 115, 653–657

    Google Scholar 

  • Nirmala, N. R. and Wagner, G. (1988). Measurements of 13C relaxation times in proteins by two-dimensional heteronuclear 1H–13C correlation spectroscopy. J. Am. Chem. Soc., 110, 7557–7558

    Article  Google Scholar 

  • Nirmala, N. R. and Wagner, G. (1989). Measurement of 13C spin-spin relaxation times by two-dimensional heteronuclear 1H–13C correlation spectroscopy. J. Magn. Reson., 82, 659–661

    Google Scholar 

  • Noggle, J. H. and Schirmer, R. E. (1971). The Nuclear Overhauser Effect. Academic Press, New York

    Google Scholar 

  • Palmer, A. G., III, Skelton, N. J., Chazin, W. J., Wright, P. E. and Rance, M. (1992). Suppression of the effects of cross-correlation between dipolar and anisotropic chemical shift relaxation mechanisms in the measurement of spin-spin relaxation rates. Mol. Phys., 75, 699–711

    Article  Google Scholar 

  • Peng, J. W., Thanabal, V. and Wagner, G. (1991a). 2D heteronuclear NMR measurements of spin-lattice relaxation times in the rotating frame of X nuclei in heteronuclear HX spin systems. J. Magn. Reson., 94, 82–100

    Google Scholar 

  • Peng, J. W., Thanabal, V. and Wagner, G. (1991b). Improved accuracy of heteronuclear transverse relaxation time measurements in macromolecules: Elimination of antiphase contributions. J. Magn. Reson., 95, 421–427

    Google Scholar 

  • Peng, J. W. and Wagner, G. (1992a). Mapping of spectral density functions using heteronuclear NMR relaxation measurements. J. Magn. Reson., 98, 308–332

    Google Scholar 

  • Peng, J. W. and Wagner, G. (1992b). Mapping of spectral densities of N–H bond motions in eglin c using heteronuclear relaxation experiments. Biochemistry (in press)

    Google Scholar 

  • Ponder, J. and Richards, F. M. (1987). Tertiary templates for proteins: Use of packing criteria in the enumeration of allowed sequences for different structural classes. J. Mol. Biol., 193, 775–791

    Article  Google Scholar 

  • Redfield, A. G. (1965). The theory of relaxation processes. Adv. Magn. Reson., 1, 1

    Article  Google Scholar 

  • Ribeiro, A. A., King, R., Restivo, C. and Jardetzky, O. (1980). An approach to the mapping of internal motions in proteins. Analysis of 13C NMR relaxation in the bovine pancreatic trypsin inhibitor. J. Am. Chem. Soc., 102, 4040–4051

    Article  Google Scholar 

  • Richards, F. M. (1974). The interpretation of protein structures: Total volume, group volume distributions and packing density. J. Mol. Biol., 82, 1–14

    Article  Google Scholar 

  • Richarz, R., Nagayama, K. and Wüthrich, K. (1980). Carbon-13 nuclear magnetic resonance relaxation studies of internal mobility of the polypeptide chain in basic pancreatic trypsin inhibitor and a selectively reduced analogue. Biochemistry, 19, 5189–5196

    Article  Google Scholar 

  • Schneider, D. M., Dellwo, M. and Wand, A. J. (1992). Fast internal main-chain dynamics of human ubiquitin. Biochemistry, 31, 3645–3652

    Article  Google Scholar 

  • Solomon, I. (1955). Relaxation processes in a system of two spins. Phys. Rev., 99, 559–565

    Article  Google Scholar 

  • Stone, M. J., Fairbrother, W. J., Palmer, A. G., Reizer, J., Saier, M. H. and Wright, P. E. (1992). Backbone dynamics of the Bacillus subtilis glucose permease IIA domain determined from 15N relaxation measurements. Biochemistry, 31, 4394–4406

    Article  Google Scholar 

  • Vold, R. L. and Vold, R. R. (1978). Nuclear magnetic relaxation in coupled spin systems. Prog. NMR Spectrosc., 12, 79–133

    Article  Google Scholar 

  • Wagner, G. (1983). Characterization of the distribution of internal motions in the basic pancreatic trypsin inhibitor using a large number of internal NMR probes. Quart. Rev. Biophys., 16, 1–57

    Article  Google Scholar 

  • Wagner, G. (1990). NMR investigations of protein structure. Prog. NMR Spectrosc., 22, 101–139

    Article  Google Scholar 

  • Wagner, G., Hyberts, S. G. and Havel, T. F. (1992). NMR structure determination in solution: a critique and comparison with X-ray crystallography. Ann. Rev. Biophys. Biomol. Struct., 21, 167–198

    Article  Google Scholar 

  • Werbelow, L. G. and Grant, D. M. (1977). Intramolecular dipolar relaxation in multispin systems. In Waugh, J. S. (Ed.), Advances in Magnetic Resonance, Vol. 9. Academic Press, San Diego, pp. 189–299

    Google Scholar 

  • Wittebort, R. J. and Szabo A. (1978). Theory of NMR relaxation in macromolecules: Restricted diffusion and jump models for multiple internal rotations in amino acid side chains. J. Chem. Phys., 69, 1723–1736

    Article  Google Scholar 

  • Woessner, D. E. (1962). Spin relaxation processes in a two-proton system undergoing anisotropic reorientation. J. Chem. Phys., 36, 1–4

    Article  Google Scholar 

  • Woodward, C. K. and Hilton, B. D. (1980). Hydrogen isotope exchange kinetics of single protons in bovine pancreatic trypsin inhibitor. Biophys. J., 32, 561–575

    Article  Google Scholar 

  • Wüthrich, K. (1986). NMR of Proteins and Nucleic Acids. Wiley, New York

    Google Scholar 

  • Wüthrich, K. and Wagner, G. (1975). NMR investigations of the dynamics of the aromatic amino acid residues in the basic pancreatic trypsin inhibitor. FEBS Lett., 50, 265–268

    Article  Google Scholar 

  • Wüthrich, K. and Wagner, G. (1978). Internal motions in globular proteins. Trends Biochem. Sci., 3, 227–230

    Article  Google Scholar 

  • Zare, R. N. (1988). Angular Momentum. Wiley, New York

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Copyright information

© 1993 The contributors

About this chapter

Cite this chapter

Wagner, G., Hyberts, S., Peng, J.W. (1993). Study of Protein Dynamics by NMR. In: Clore, G.M., Gronenborn, A.M. (eds) NMR of Proteins. Topics in Molecular and Structural Biology. Palgrave, London. https://doi.org/10.1007/978-1-349-12749-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-349-12749-8_8

  • Publisher Name: Palgrave, London

  • Print ISBN: 978-1-349-12751-1

  • Online ISBN: 978-1-349-12749-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics