Skip to main content

Pulmonary surfactant-associated proteins: their role in surface tension reduction

  • Chapter
The Surfactant System of the Lung

Abstract

It is generally, albeit not universally [1,2], accepted that pulmonary surfactant stabilizes the lung by lowering the surface tension at the air-water interface of the alveoli. The requirement for pulmonary surfactant is particularly critical at birth when the newborn infant must clear its lungs of fetal pulmonary fluid and establish regular air breathing. Indeed, as outlined in detail in other chapters of this book, treatment of prematurely delivered infants with extracts of bovine or porcine surfactant leads to a significant reduction in the incidence and in the intensity of the respiratory distress syndrome of the neonate [3–5].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bangham, A. D. Lung surfactant: how it does and does not work. Lung 1987; 165: 17–25.

    Article  Google Scholar 

  2. Hills, B. A. What is the true role of surfactant in the lung. Thorax 1981; 36: 1–4.

    Article  Google Scholar 

  3. Jobe, A. and Ikegami, M. Surfactant in the treatment of respiratory distress syndrome. Am Rev Resp Dis 1987; 136: 1256–75.

    Article  Google Scholar 

  4. Notter, R. H. and Shapiro, D. L. Lung surfactants for replacement therapy: biochemical, biophysical, and clinical aspects. Clin Perinatol 1987; 14: 433–79.

    Google Scholar 

  5. Robertson, B. and Lachman, B. Experimental evaluation of surfactants for replacement therapy. Exp Lung Res 1988; 14: 279–310.

    Article  Google Scholar 

  6. Yu, S.-H., Harding, P. G. F., Smith, N. and Possmayer, F. Bovine pulmonary surfactant: chemical composition and physical properties. Lipids 1983; 18: 522–9.

    Article  Google Scholar 

  7. Possmayer, F., Yu, S.-H., Weber, J. M. and Harding, P. G. R. Pulmonary surfactant. Biochem Cell Biol 1984; 62: 1121–31.

    Article  Google Scholar 

  8. Beppu, O. S., Clements, J. A. and Goerke, J. Phosphatidylglycerol-deficient lung surfactant has normal properties. J Appl Physiol 1983; 55: 496–502.

    Google Scholar 

  9. Hallman, M., Enhorning, G. and Possmayer, F. Composition and surface activity of normal and phosphatidylglycerol-deficient lung surfactant. Pediatr Res 1985; 19: 286–92.

    Article  Google Scholar 

  10. Egberts, J., Beintema-Dubbeldam, A. and de Boers, A. Phosphatidylinositol and not phosphatidylglycerol is the important minor phospholipid in rhesus-monkey surfactant. Biochim Biophys Acta 1987; 919: 90–2.

    Article  Google Scholar 

  11. Possmayer, F. A proposed nomenclature system for pulmonary surfactant-associated proteins. Resp Dis 1988; 138: 990–8.

    Article  Google Scholar 

  12. Persson, A., Rust, K., Chang, D., Moxley, M., Longmore, W. J. and Crouch, E. CP4: a pneumatocyte-derived collagenous surfactant-associated protein. Evidence for heterogeneity of collagenous surfactant proteins. Biochemistry 1988; 27: 8576–84.

    Article  Google Scholar 

  13. Wright, J. R. and Clements, J. A. Metabolism and turnover of lung surfactant. Am Rev Resp Dis 1987; 135: 426–44.

    Article  Google Scholar 

  14. Hawgood, S. Pulmonary surfactant apoproteins: a review of protein and genomic structure. Am J Physiol 1989; 257: L13–22.

    Google Scholar 

  15. Voss, T., Eistettier, H., Schafer, K. and Engel, J. Macromolecular organization of natural and recombinant lung surfactant protein SP28–36. Structural homology with complement factor CIQ. J Mol Biol 1988; 201: 219–27.

    Google Scholar 

  16. Haagsman, H. P., Hawgood, S., Sargeant, T., Buckley, D., White, R. T., Drickamer, K. and Benson, B. J. The major lung surfactant protein, SP28–36, is a calcium-dependent, carbohydrate-binding protein. J Biol Chem 1987; 262: 13877–80.

    Google Scholar 

  17. Weaver, T. E., Sarin, U. K., Sawtell, N., Hull, W. M. and Whitsett, J. A. Identification of surfactant proteolipid in human surfactant and fetal lung. J. Appl Physiol 1988; 65: 982–7.

    Google Scholar 

  18. Curstedt, T., Johansson, J., Barros-Soderling, Robertson, B., Nilsson, G., Westberg, M. and Jornvall, H. Low-molecular-mass surfactant protein type 1. The primary structure of a hydrophobic 8-kDa polypeptide with eight half-cystine residues. Eur J Biochem 1988; 172: 521–5.

    Article  Google Scholar 

  19. Yu, S.-H., Chung, W., Olafson, R. W., Harding, P. G. R. and Possmayer, F. Characterization of the small hydrophobic proteins associated with pulmonary surfactant. Biochim Biophys Acta 1987; 921: 437–48.

    Article  Google Scholar 

  20. Yu, S.-H. and Possmayer, F. Comparative studies on the biophysical activities of the low molecular weight hydrophobic proteins purified from bovine pulmonary surfactant. Biochim Biophys Acta 1988; 961: 337–50.

    Article  Google Scholar 

  21. Johansson, J., Jornvall, H., Eklund, A., Christensen, N., Robertson, B. and Curstedt, T. Hydrophobic 3.7 kDa surfactant polypeptide: structural characterization of the human and bovine forms. FEBS Lett 1988; 232: 61–4.

    Article  Google Scholar 

  22. Yu, S.-H., Chung, W. and Possmayer, F. Structural relationship between the two small hydrophobic apoproteins in bovine pulmonary surfactant. Biochim Biophys Acta 1989; 1005: 93–6.

    Article  Google Scholar 

  23. Enhorning, G. Pulsating bubble technique for evaluating pulmonary surfactant. J Appl Physiol 1977; 43: 198–203.

    Google Scholar 

  24. Weber, M. J. and Possmayer, F. Calcium interactions in pulmonary surfactant. Biochim Biophys Acta 1984; 796: 83–91.

    Article  Google Scholar 

  25. Chung, J., Yu, S.-H., Whitsett, J. A., Harding, P. G. R. and Possmayer, F. Effect of surfactant-associated protein A (SP-A) on the activity of lipid extract surfactant. Biochim Biophys Acta 1989; 1002: 348–58.

    Article  Google Scholar 

  26. Goerke, J. and Clements, J. A. Alveolar surface tension and lung surfactant. In: Fishman, A. P., Macklem, P. T., Mead, J. and Geiger, S. R., eds. Handbook of Physiology, Section 3, The Respiratory System, Vol.III, part 1, Bethesda: American Physiological Society, 1986; 247–61.

    Google Scholar 

  27. Notter, R. H. Biophysical behavior of lung surfactant: implications for respiratory physiology and pathophysiology. Semin Perinatol 1988; 12: 180–212.

    Google Scholar 

  28. Hawco, M. W., Davis, P. J. and Keough, K. M. W. Lipid fluidity in lung surfactant: monolayers of saturated and unsaturated lecithins. J Appl Physiol 1981; 51: 509–15.

    Google Scholar 

  29. Egberts, J., Sloot, H. and Mazure, A. Minimal surface tension, squeeze-out and transition temperatures of binary mixtures of dipalmitoylphosphatidylcholine and unsaturated phospholipids. Biochim Biophys Acta 1989; 1002: 109–13.

    Article  Google Scholar 

  30. Bachofen, H., Schurch, S., Urbinelli, M. and Weibel, E. R. Relation among alveolar surface tension, surface area, volume and recoil pressure. J. Appl Physiol 1987; 62: 1828–87.

    Google Scholar 

  31. Eisenberg, D., Schwarz, E., Komaromy, M. and Wall, R. Analysis of membrane and surface protein sequences with the hydrophobic moment plot. J Mol Biol 1984; 179: 125–42.

    Article  Google Scholar 

  32. Waring, A. J., Fan, B., Nguyen, T., Amirkhanian, J. and Taeusch, W. Structure—function relationships of surfactant proteins SP-B and SP-C. Prog Resp Sci 1989; 25: 343–6.

    Google Scholar 

  33. Elledge, B. W. and Whitsett, J. Interaction of lung surfactant protein C (SP-C) with phospholipid bilayers: Spectroscopic studies. Am Rev Resp Dis 1989; 139: A285.

    Google Scholar 

  34. Waring, A., Taeusch, W., Bruni, R., Amirkhanian, J., Fan, B., Stevens, R. and Young, J. Synthetic amphipathic sequences of surfactant protein-B mimic several physicochemical and in vivo properties of native pulmonary surfactant proteins. Peptide Res 1989; 2: 308–13.

    Google Scholar 

  35. Hawgood, S., Benson, B. J., Schilling, J., Damm, D., Clements, J. A. and White, R. T. Nucleotide and amino acid sequences of pulmonary surfactant protein SP 18 and evidence for cooperation between SP 18 and SP 28–36 in surfactant lipid adsorption. Proc Natl Acad Sci USA 1987; 84: 66–70.

    Article  Google Scholar 

  36. Hawgood, S. Structure function: correlation in reassembled surfactant. Prog Resp Sci 1989; 25: 72–80.

    Google Scholar 

  37. Pison, U., Shiffer, K., Hawgood, S. and Goerke, J. Effects of the surfactant-associated proteins, SP-A, SP-B and SP-C on phospholipid surface film formation. Prog Resp Sci 1989; 25: 271–3.

    Google Scholar 

  38. Suzuki, Y., Fujita, Y. and Kogishi, K. Reconstitution of tubular myelin from synthetic lipids and proteins associated with pig pulmonary surfactant. Am Rev Resp Dis 1989; 140: 75–81.

    Article  Google Scholar 

  39. Goerke, J. Lung surfactant. Biochim Biophys Acta 1974; 344: 241–61.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Copyright information

© 1991 Macmillan Publishers Limited

About this chapter

Cite this chapter

Possmayer, F., Cockshutt, A., Yu, SH. (1991). Pulmonary surfactant-associated proteins: their role in surface tension reduction. In: Cosmi, E.V., Di Renzo, G.C., Anceschi, M.M. (eds) The Surfactant System of the Lung. Palgrave, London. https://doi.org/10.1007/978-1-349-12553-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-349-12553-1_2

  • Publisher Name: Palgrave, London

  • Print ISBN: 978-1-349-12555-5

  • Online ISBN: 978-1-349-12553-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics