Pulmonary surfactant-associated proteins: their role in surface tension reduction

  • Fred Possmayer
  • Amanda Cockshutt
  • Shou-Hwa Yu
Chapter

Abstract

It is generally, albeit not universally [1,2], accepted that pulmonary surfactant stabilizes the lung by lowering the surface tension at the air-water interface of the alveoli. The requirement for pulmonary surfactant is particularly critical at birth when the newborn infant must clear its lungs of fetal pulmonary fluid and establish regular air breathing. Indeed, as outlined in detail in other chapters of this book, treatment of prematurely delivered infants with extracts of bovine or porcine surfactant leads to a significant reduction in the incidence and in the intensity of the respiratory distress syndrome of the neonate [3–5].

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Bangham, A. D. Lung surfactant: how it does and does not work. Lung 1987; 165: 17–25.CrossRefGoogle Scholar
  2. [2]
    Hills, B. A. What is the true role of surfactant in the lung. Thorax 1981; 36: 1–4.CrossRefGoogle Scholar
  3. [3]
    Jobe, A. and Ikegami, M. Surfactant in the treatment of respiratory distress syndrome. Am Rev Resp Dis 1987; 136: 1256–75.CrossRefGoogle Scholar
  4. [4]
    Notter, R. H. and Shapiro, D. L. Lung surfactants for replacement therapy: biochemical, biophysical, and clinical aspects. Clin Perinatol 1987; 14: 433–79.Google Scholar
  5. [5]
    Robertson, B. and Lachman, B. Experimental evaluation of surfactants for replacement therapy. Exp Lung Res 1988; 14: 279–310.CrossRefGoogle Scholar
  6. [6]
    Yu, S.-H., Harding, P. G. F., Smith, N. and Possmayer, F. Bovine pulmonary surfactant: chemical composition and physical properties. Lipids 1983; 18: 522–9.CrossRefGoogle Scholar
  7. [7]
    Possmayer, F., Yu, S.-H., Weber, J. M. and Harding, P. G. R. Pulmonary surfactant. Biochem Cell Biol 1984; 62: 1121–31.CrossRefGoogle Scholar
  8. [8]
    Beppu, O. S., Clements, J. A. and Goerke, J. Phosphatidylglycerol-deficient lung surfactant has normal properties. J Appl Physiol 1983; 55: 496–502.Google Scholar
  9. [9]
    Hallman, M., Enhorning, G. and Possmayer, F. Composition and surface activity of normal and phosphatidylglycerol-deficient lung surfactant. Pediatr Res 1985; 19: 286–92.CrossRefGoogle Scholar
  10. [10]
    Egberts, J., Beintema-Dubbeldam, A. and de Boers, A. Phosphatidylinositol and not phosphatidylglycerol is the important minor phospholipid in rhesus-monkey surfactant. Biochim Biophys Acta 1987; 919: 90–2.CrossRefGoogle Scholar
  11. [11]
    Possmayer, F. A proposed nomenclature system for pulmonary surfactant-associated proteins. Resp Dis 1988; 138: 990–8.CrossRefGoogle Scholar
  12. [12]
    Persson, A., Rust, K., Chang, D., Moxley, M., Longmore, W. J. and Crouch, E. CP4: a pneumatocyte-derived collagenous surfactant-associated protein. Evidence for heterogeneity of collagenous surfactant proteins. Biochemistry 1988; 27: 8576–84.CrossRefGoogle Scholar
  13. [13]
    Wright, J. R. and Clements, J. A. Metabolism and turnover of lung surfactant. Am Rev Resp Dis 1987; 135: 426–44.CrossRefGoogle Scholar
  14. [14]
    Hawgood, S. Pulmonary surfactant apoproteins: a review of protein and genomic structure. Am J Physiol 1989; 257: L13–22.Google Scholar
  15. [15]
    Voss, T., Eistettier, H., Schafer, K. and Engel, J. Macromolecular organization of natural and recombinant lung surfactant protein SP28–36. Structural homology with complement factor CIQ. J Mol Biol 1988; 201: 219–27.Google Scholar
  16. [16]
    Haagsman, H. P., Hawgood, S., Sargeant, T., Buckley, D., White, R. T., Drickamer, K. and Benson, B. J. The major lung surfactant protein, SP28–36, is a calcium-dependent, carbohydrate-binding protein. J Biol Chem 1987; 262: 13877–80.Google Scholar
  17. [17]
    Weaver, T. E., Sarin, U. K., Sawtell, N., Hull, W. M. and Whitsett, J. A. Identification of surfactant proteolipid in human surfactant and fetal lung. J. Appl Physiol 1988; 65: 982–7.Google Scholar
  18. [18]
    Curstedt, T., Johansson, J., Barros-Soderling, Robertson, B., Nilsson, G., Westberg, M. and Jornvall, H. Low-molecular-mass surfactant protein type 1. The primary structure of a hydrophobic 8-kDa polypeptide with eight half-cystine residues. Eur J Biochem 1988; 172: 521–5.CrossRefGoogle Scholar
  19. [19]
    Yu, S.-H., Chung, W., Olafson, R. W., Harding, P. G. R. and Possmayer, F. Characterization of the small hydrophobic proteins associated with pulmonary surfactant. Biochim Biophys Acta 1987; 921: 437–48.CrossRefGoogle Scholar
  20. [20]
    Yu, S.-H. and Possmayer, F. Comparative studies on the biophysical activities of the low molecular weight hydrophobic proteins purified from bovine pulmonary surfactant. Biochim Biophys Acta 1988; 961: 337–50.CrossRefGoogle Scholar
  21. [21]
    Johansson, J., Jornvall, H., Eklund, A., Christensen, N., Robertson, B. and Curstedt, T. Hydrophobic 3.7 kDa surfactant polypeptide: structural characterization of the human and bovine forms. FEBS Lett 1988; 232: 61–4.CrossRefGoogle Scholar
  22. [22]
    Yu, S.-H., Chung, W. and Possmayer, F. Structural relationship between the two small hydrophobic apoproteins in bovine pulmonary surfactant. Biochim Biophys Acta 1989; 1005: 93–6.CrossRefGoogle Scholar
  23. [23]
    Enhorning, G. Pulsating bubble technique for evaluating pulmonary surfactant. J Appl Physiol 1977; 43: 198–203.Google Scholar
  24. [24]
    Weber, M. J. and Possmayer, F. Calcium interactions in pulmonary surfactant. Biochim Biophys Acta 1984; 796: 83–91.CrossRefGoogle Scholar
  25. [25]
    Chung, J., Yu, S.-H., Whitsett, J. A., Harding, P. G. R. and Possmayer, F. Effect of surfactant-associated protein A (SP-A) on the activity of lipid extract surfactant. Biochim Biophys Acta 1989; 1002: 348–58.CrossRefGoogle Scholar
  26. [26]
    Goerke, J. and Clements, J. A. Alveolar surface tension and lung surfactant. In: Fishman, A. P., Macklem, P. T., Mead, J. and Geiger, S. R., eds. Handbook of Physiology, Section 3, The Respiratory System, Vol.III, part 1, Bethesda: American Physiological Society, 1986; 247–61.Google Scholar
  27. [27]
    Notter, R. H. Biophysical behavior of lung surfactant: implications for respiratory physiology and pathophysiology. Semin Perinatol 1988; 12: 180–212.Google Scholar
  28. [28]
    Hawco, M. W., Davis, P. J. and Keough, K. M. W. Lipid fluidity in lung surfactant: monolayers of saturated and unsaturated lecithins. J Appl Physiol 1981; 51: 509–15.Google Scholar
  29. [29]
    Egberts, J., Sloot, H. and Mazure, A. Minimal surface tension, squeeze-out and transition temperatures of binary mixtures of dipalmitoylphosphatidylcholine and unsaturated phospholipids. Biochim Biophys Acta 1989; 1002: 109–13.CrossRefGoogle Scholar
  30. [30]
    Bachofen, H., Schurch, S., Urbinelli, M. and Weibel, E. R. Relation among alveolar surface tension, surface area, volume and recoil pressure. J. Appl Physiol 1987; 62: 1828–87.Google Scholar
  31. [31]
    Eisenberg, D., Schwarz, E., Komaromy, M. and Wall, R. Analysis of membrane and surface protein sequences with the hydrophobic moment plot. J Mol Biol 1984; 179: 125–42.CrossRefGoogle Scholar
  32. [32]
    Waring, A. J., Fan, B., Nguyen, T., Amirkhanian, J. and Taeusch, W. Structure—function relationships of surfactant proteins SP-B and SP-C. Prog Resp Sci 1989; 25: 343–6.Google Scholar
  33. [33]
    Elledge, B. W. and Whitsett, J. Interaction of lung surfactant protein C (SP-C) with phospholipid bilayers: Spectroscopic studies. Am Rev Resp Dis 1989; 139: A285.Google Scholar
  34. [34]
    Waring, A., Taeusch, W., Bruni, R., Amirkhanian, J., Fan, B., Stevens, R. and Young, J. Synthetic amphipathic sequences of surfactant protein-B mimic several physicochemical and in vivo properties of native pulmonary surfactant proteins. Peptide Res 1989; 2: 308–13.Google Scholar
  35. [35]
    Hawgood, S., Benson, B. J., Schilling, J., Damm, D., Clements, J. A. and White, R. T. Nucleotide and amino acid sequences of pulmonary surfactant protein SP 18 and evidence for cooperation between SP 18 and SP 28–36 in surfactant lipid adsorption. Proc Natl Acad Sci USA 1987; 84: 66–70.CrossRefGoogle Scholar
  36. [36]
    Hawgood, S. Structure function: correlation in reassembled surfactant. Prog Resp Sci 1989; 25: 72–80.Google Scholar
  37. [37]
    Pison, U., Shiffer, K., Hawgood, S. and Goerke, J. Effects of the surfactant-associated proteins, SP-A, SP-B and SP-C on phospholipid surface film formation. Prog Resp Sci 1989; 25: 271–3.Google Scholar
  38. [38]
    Suzuki, Y., Fujita, Y. and Kogishi, K. Reconstitution of tubular myelin from synthetic lipids and proteins associated with pig pulmonary surfactant. Am Rev Resp Dis 1989; 140: 75–81.CrossRefGoogle Scholar
  39. [39]
    Goerke, J. Lung surfactant. Biochim Biophys Acta 1974; 344: 241–61.CrossRefGoogle Scholar

Copyright information

© Macmillan Publishers Limited 1991

Authors and Affiliations

  • Fred Possmayer
  • Amanda Cockshutt
  • Shou-Hwa Yu

There are no affiliations available

Personalised recommendations