Ion Movements Early in Myocardial Ischaemia: Relation to Arrhythmias, Early Contractile Failure and Tissue Necrosis

  • Philip A. Poole-Wilson


Myocardial infarction is usually the result of obstruction to flow in a coronary artery as a consequence of rupture of an atheromatous plaque and associated thrombosis. More rarely myocardial infarction (but often myocardial ischaemia) is related to an increased workload on the heart in the presence of limited blood flow. The major consequences are arrhythmias leading to sudden death, reduction of the ability of the myocytes to contract leading to heart failure, and cell necrosis leading to scar formation, remodelling of the residual myocardium and heart failure. Many of the key events, and, in particular, arrhythmias, early contractile failure and cell necrosis have been linked to alterations in ion homoeostatis within the myocardial cell. Indeed, some authors have argued that the ion changes associated with the metabolic consequences of reduced oxygen supply can account for almost all these observed effects. Alternatively it may be that during ischaemia damage to structures within the myocardial cell initiates cell damage and finally results in cell necrosis.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Allen, D. G., Lee, J. A. and Smith, G. L. (1989). The consequences of simulated schaemia on intracellular Ca2+ and tension in isolated ferret ventricular muscle. J. Physiol., 410, 297–323PubMedPubMedCentralCrossRefGoogle Scholar
  2. Allen, D. G., Morris, P. G., Orchard, C. H. and Pirolo, J. S. (1985). A nuclear magnetic resonance study of metabolism in the ferret heart during hypoxia and inhibition of glycolysis. J. Physiol., 361, 185–204PubMedPubMedCentralCrossRefGoogle Scholar
  3. Allen, D. G. and Orchard, C. H. (1983). Intracellular calcium concentration during hypoxia and metabolic inhibition in mammalian ventricular muscle. J. Physiol., 339, 107–122PubMedPubMedCentralCrossRefGoogle Scholar
  4. Allen, D. G. and Orchard, C. H. (1984). Measurement of intracellular calcium concentration in heart muscle: the effects of inotropic interventions and hypoxia. J. Mol. Cell. Cardiol., 16,117–128PubMedCrossRefGoogle Scholar
  5. Allen, D. G. and Orchard, C. H. (1987). Myocardial contractile function during ischaemia and hypoxia. Circ. Res., 60, 153–168PubMedCrossRefGoogle Scholar
  6. Balschi, J.A., Frazer, J. C., Fetters, J. K., Clarke, K., Springer, C. S., Smith, T. W. and Ingwall, J. S. (1985). Shift reagent and 23Na NMR discriminates between extra and intra cellular sodium pools in ischemic heart. Circulation, 72, 355Google Scholar
  7. Braunwald, E. and Kloner, R. A. (1982). The stunned myocardium: prolonged, postischemic ventricular dysfunction. Circulation, 66, 1146–1149PubMedCrossRefGoogle Scholar
  8. Carmeliet, E. (1978). Cardiac transmembrane potentials and metabolism. Circ. Res., 42, 577–587PubMedCrossRefGoogle Scholar
  9. Case, R. B. (1971). Ion alterations during myocardial ischaemia. Cardiology, 56, 245–262PubMedCrossRefGoogle Scholar
  10. Chierchia, S., Brunelli, C., Simonetti, I., Lazzari, M. and Maseri, A. (1980). Sequence of events in angina at rest: primary reduction in coronary flow. Circulation, 61, 759–768PubMedCrossRefGoogle Scholar
  11. Cobbe, S. M. and Poole-Wilson, P. A. (1982). Continuous coronary sinus and arterial pH monitoring during pacing induced ischaemia in coronary artery disease. Br. Heart J., 47, 369–374PubMedPubMedCentralCrossRefGoogle Scholar
  12. Conrad, G. L., Rau, E. E. and Shine, K. I. (1979). Creatine kinase release, potassium-42 content, and mechanical performance in anoxic rabbit myocardium. J. Clin. Invest., 64, 155–161PubMedPubMedCentralCrossRefGoogle Scholar
  13. Crake, T., Crean, P., Shapiro, L., Canepa-Anson, R. C. and Poole-Wilson, P. A. (1988). Continuous recording of coronary sinus oxygen saturation during atrial pacing in patients with coronary artery disease or with syndrome X. Br. Heart J., 59, 31–38PubMedPubMedCentralCrossRefGoogle Scholar
  14. Crake, T., Crean, P., Shapiro, L. M., Rickards, A. F. and Poole-Wilson, P. A. (1987a). Acidosis in heart muscle after acute coronary occlusion in man: studies during angioplasty. Br. Heart J., 57, 77Google Scholar
  15. Crake, T., Kirby, M. S. and Poole-Wilson, P. A. (1987b). Potassium efflux from the myocardium during hypoxia: role of lactate ions. Cardiovasc. Res., 21, 886–891PubMedCrossRefGoogle Scholar
  16. Crake, T. and Poole-Wilson, P. A. (1990). Calcium exchange in rabbit myocardium during and after hypoxia: role of sodium-calcium exchange. J. Mot. Cell. Cardiol., 22, 1051–1064CrossRefGoogle Scholar
  17. Donaldson, R. M., Taggart, P., Bennett, J. G. and Rickards, A. F. (1984). Study of electrophysiological ischaemic events during coronary angioplasty. Texas Heart Inst. J., 11, 24–30Google Scholar
  18. Ellis, D. and Noireaud, J. (1987). Intracellular pH in sheep Purkinje fibres and ferret papillary muscles during hypoxia and recovery. J. Physiol., 383, 125–141PubMedPubMedCentralCrossRefGoogle Scholar
  19. Fiolet, J. W. T., Baartscheer, A., Schumacher, C. A., Coronel, R. and ter Welle, H. F. (1984). The change of free energy of ATP hydrolysis during global ischaemia and hypoxia in the rat heart. Its possible role in the regulation of transsarcolemmal sodium and potassium gradients. J. Mot. Cell. Cardiol., 16, 1023–1036CrossRefGoogle Scholar
  20. Gaspardone, A., Shine, K. I., Seabrooke, S. R. and Poole-Wilson, P. A. (1986). Potassium loss from rabbit myocardium during hypoxia; evidence for passive efflux linked to anion extrusion. J. Mot. Cell. Cardiol., 18, 389–399CrossRefGoogle Scholar
  21. Gasser, R. N. A. and Vaughan-Jones, R. D. (1990). Mechanism of potassium efflux and action potential shortening during ischaemia in isolated mammalian cardiac muscle. J. Physiol., 431, 713–741PubMedPubMedCentralCrossRefGoogle Scholar
  22. Gudbjarnason, S., Mathes, P. and Ravens, K. G. (1970). Functional compartmentalisation of ATP and creatine phosphate in heart muscle. J. Mot. Cell. Cardiol., 1, 325–339CrossRefGoogle Scholar
  23. Holmberg, S. R. M., Cumming, D. V. E., Kusuma, Y., Hearse, D. J., Poole-Wilson, P. A., Shattock, M. J. and Williams, A. J. (1991). Reactive oxygen species modify the structure and function of the cardiac sarcoplasmic reticulum calcium-release channel. Cardioscience, 2, 19–25PubMedGoogle Scholar
  24. Jiang, C., Crake, T. and Poole-Wilson (1991). Inhibition of potassium efflux from hypoxic rabbit myocardium by glibenclamide and barium. Cardiovasc. Res. (in press)Google Scholar
  25. Kantor, P. F., Coetzee, W. A., Carmeliet, E. E., Dennis, S. C. and Opie, L. H. (1990). Reduction of ischemic K+ loss and arrhythmias in rat hearts. Effect of glibenclamide, a sulphonylurea. Circ. Res., 66, 478–485PubMedCrossRefGoogle Scholar
  26. Kihara, Y., Grossman, W. and Morgan, J. P. (1989). Direct measurement of changes in intracellular calcium transients during hypoxia, ischemia, and reperfusion of the intact mammalian heart. Circ. Res., 65, 1029–1044PubMedCrossRefGoogle Scholar
  27. Kleber, A. G. (1983). Resting membrane potential, extracellular potassium activity and intracellular sodium activity during acute global ischaemia in isolated perfused guinea pig hearts. Circ. Res., 52, 442–450PubMedCrossRefGoogle Scholar
  28. Kleber, A. G. and Wilde, A. A. M. (1986). Regulation of intracellular sodium ions in acute reversible myocardial ischemia: a perspective. J. Mot. Cell. Cardiol., 18 (Suppl. 4), 27–30CrossRefGoogle Scholar
  29. Knopf, H., Theising, R., Moon, C. H. and Hirche, Hj. (1990). Continuous determination of Ion Movements Early in Myocardial Ischaemia 95 extracellular space and changes of K+, Na+, Ca2+, and H+ during global ischaemia in isolated rat hearts. J. Mol. Cell. Cardiol., 22, 1259–1283PubMedCrossRefGoogle Scholar
  30. Kodama, I., Wilde, A., Janse, M. J., Durrer, D. and Yamada, K. (1984). Combined effects of hypoxia, hyperkalaemia and acidosis on membrane action potential and excitability of guinea-pig ventricular muscle. J. Mol. Cell. Cardiol., 16, 247–259PubMedCrossRefGoogle Scholar
  31. Lee, H.-C., Smith, N., Mohabir, R. and Clusin, W. T. (1987). Cytosolic calcium transients from the beating mammalian heart. Proc. Natl Acad. Sci. USA, 84, 7793–7797PubMedPubMedCentralCrossRefGoogle Scholar
  32. Logic, J. R. (1973). Enhancement of vulnerability of the ventricle to fibrillation (VF) by regional hyperkalaemia. Cardiovasc. Res., 7, 501–507PubMedCrossRefGoogle Scholar
  33. Marban, E., Kitakaze, M., Kusuoka, H., Porterfield, J. K. and Yue, D. T. (1987). Intracellular free calcium concentration measured with 19F NMR spectroscopy in intact ferret hearts. Proc. Natl Acad. Sci. USA, 84, 6005–6009PubMedPubMedCentralCrossRefGoogle Scholar
  34. Mathur, P. P. and Case, R. B. (1973). Phosphate loss during reversible myocardial ischaemia. J. Mol. Cell. Cardiol., 5, 375–393PubMedCrossRefGoogle Scholar
  35. Murphy, E., Aiton, J. F., Horres, C. R. and Lieberman, M. (1983). Calcium elevation in cultured heart cells: its role in cell injury. Am. J. Phys., 245, C316–C321Google Scholar
  36. Noma, A. (1983). ATP-regulated K+ channels in cardiac muscle. Nature, 305, 147–148PubMedCrossRefGoogle Scholar
  37. Noma, A. and Shibasaki, T. (1985). Membrane current through adenosine-triphosphate-regulated potassium channels in guinea-pig ventricular cells. J. Physiol., 363, 463–480PubMedPubMedCentralCrossRefGoogle Scholar
  38. Poole-Wilson, P. A. (1984a). Potassium and the heart. In Morgan, D. B. (Ed.), Clinics in Endocrinology and Metabolism: Electrolyte Disorders. Saunders, London, pp. 249–268Google Scholar
  39. Poole-Wilson, P. A. (1984b). What causes cell death? In Hearse, D. J. and Yellon, D. M. (Eds), Therapeutic Approaches to Myocardial Infarct Size Limitation. Raven Press, New York, pp. 43–60Google Scholar
  40. Poole-Wilson, P. A. (1985). The nature of myocardial damage following reoxygenation. In Parratt, J. R. (Ed.), Control and Manipulation of Calcium Movement. Raven Press, New York, pp. 325–340Google Scholar
  41. Poole-Wilson, P. A. (1990). Loss of hydrogen and potassium ions after short periods of myocardial ischaemia. In Serruys, P. W., Simon, R. and Beatt, K. J. (Eds), PTCA: An Investigational Tool and Non-Operative Treatment of Acute Ischaemia. Kluwer Academic, Dordrecht, pp. 121–126CrossRefGoogle Scholar
  42. Poole-Wilson, P. A., Fleetwood, G. and Cobbe, S. M. (1983). Early contractile failure in myocardial ischaemia-role of acidosis. In Myocardial Ischaemia and Protection. Churchill Livingstone, Edinburgh, pp. 9–17Google Scholar
  43. Poole-Wilson, P. A., Harding, D. P., Bourdillon, P. D. V. and Tones, M. A. (1984). Calcium out of control. J. Mol. Cell. Cardiol., 16, 175–187PubMedCrossRefGoogle Scholar
  44. Poole-Wilson, P. A. and Tones, M. A. (1988). Sodium exchange during hypoxia and on reoxygenation in the isolated rabbit heart. J. Mol. Cell. Cardiol., 20, (Suppl. II), 15–22PubMedCrossRefGoogle Scholar
  45. Rau, E. E. and Langer, G. A. (1978). Dissociation of energetic state and potassium loss from anoxic myocardium. Am. J. Physiol., 235, H537–H543PubMedGoogle Scholar
  46. Serruys, P. W., Wijns, W., Van den Brond, M., Meij, S., Slager, C., Schuubiers, J. C. H., Hugenholtz, P. G. and Brower, R. W. (1984). Left ventricular performance, regional blood flow, wall motion and lactate metabolism during transluminal angioplasty. Circulation, 70, 25–36PubMedCrossRefGoogle Scholar
  47. Shen, A. C. and Jennings, R. B. (1972). Myocardial calcium and magnesium in acute ischemic myocardial injury. Am. J. Pathol., 67, 417–440PubMedPubMedCentralGoogle Scholar
  48. Sonnenblick, E. H., Spotnitz, H. M., Spiro, D. (1964). Role of the sarcomere in ventricular function and the mechanism of heart failure. Circ. Res., 24 (Suppl. 2), 70–80Google Scholar
  49. Steenbergen, C., Hill, M. L. and Jennings, R. B. (1985). Volume regulation and plasma membrane injury in aerobic, anaerobic and ischemic myocardium in vitro: effects of osmotic cell swelling on plasma membrane integrity. Circ. Res., 57 (6), 864–875PubMedCrossRefGoogle Scholar
  50. Steenbergen, C., Murphy, E., Levy, L. and London, R. E. (1987). Elevation in cytosolic free calcium concentration early in myocardial ischemia in perfused rat heart. Circ. Res., 60, 700–707PubMedCrossRefGoogle Scholar
  51. Stern, M. D., Silverman, H. S., Houser, S. R., Josephson, R. A., Capogrossi, M. C., Nichols, C. G., Lederer, W. J. and Lakatta, E. G. (1988). Anoxic contractile failure in rat myocytes is caused by failure of intracellular calcium release due to alteration of the action potential. Proc. Natl Acad. Sci. USA, 85, 6954–6958PubMedPubMedCentralCrossRefGoogle Scholar
  52. Tani, M. and Neely, J. R. (1989). Role of intracellular Na+ and Ca2+ over load and depressed recovery of ventricular function of reperfused ischemic rat hearts: possible involvement of H+-Na+ and Na+-Ca2+ exchange. Circ. Res., 65, 1045–1056PubMedCrossRefGoogle Scholar
  53. Venkatesh, N., Lamp, S. T. and Weiss, J. N. (1989). Effects of sulphonylureas on K+ loss during myocardial ischaemia and metabolic inhibition. Circulation, 80, 11–607Google Scholar
  54. Vleugels, A., Vereecke, J. and Carmeliet, E. (1980). Ionic currents during hypoxia in voltage-clamped cat ventricular muscle. Circ. Res., 47, 501–508PubMedCrossRefGoogle Scholar
  55. Watts, J. A., Norris, T. A., London, R. E., Steenbergen, C. and Murphy, E. (1990). Effects of diltiazem on lactate, ATP, and cytosolic free calcium levels in ischemic hearts. J. Cardiovasc. Pharmacol., 15, 44–49PubMedCrossRefGoogle Scholar
  56. Webb, S. C. and Poole-Wilson, P. A. (1985). Potassium exchange in the human heart during atrial pacing and myocardial ischaemia. Br. Heart J., 290, 1861–1865Google Scholar
  57. Webb, S. C., Rickards, A. F. and Poole-Wilson, P. A. (1983). Coronary sinus potassium concentration recorded during coronary angioplasty. Br. Heart J., 50, 146–148PubMedPubMedCentralCrossRefGoogle Scholar
  58. Weisman, H. F., Bush, D. E., Mannisi, J. A., Weisfeldt, M. L. and Healy, B. (1988). Cellular mechanisms of myocardial infarct expansion. Circulation, 78, 186–201PubMedCrossRefGoogle Scholar
  59. Weiss, J. and Shine, K. I. (1981). Extracellular K+ accumulation during early myocardial ischemia. Implications for arrhythmogenesis. J. Mol. Cell. Cardiol., 13, 699–704PubMedCrossRefGoogle Scholar
  60. Weiss, J. and Shine, K. I. (1982a). Extracellular K+ accumulation during myocardial ischaemia in isolated rabbit heart. Am. J. Physiol., 242, H619–H628PubMedGoogle Scholar
  61. Weiss, J. and Shine, K. I. (1982b). (K+)o accumulation and electrophysiological alterations during early myocardial ischaemia. Am. J. Physiol., 243, H318–H327PubMedGoogle Scholar
  62. Weiss, J. and Shine, K. I. (1986). Effects of heart rate on extracellular [K+] accumulation during myocardial ischemia. Am. J. Phys., 250, H982–H991Google Scholar
  63. Whalen, D. A., Jr., Hamilton, D. G., Ganote, C. E. and Jennings, R. B. (1974). Effect of a transient period of ischemia on myocardial cells, I. Effects on cell volume regulation. Am. J. Pathol., 74, 381–398PubMedPubMedCentralGoogle Scholar
  64. Wilde, A. A. M., Escande, D., Schumacher, C. A., Thuringer, D., Mestre, M., Fiolet, J. W. T. and Janse, M. J. (1990). Potassium accumulation in the globally ischaemic mammalian heart. A role for the ATP-sensitive channel. Circ. Res., 67, 835–843PubMedCrossRefGoogle Scholar

Copyright information

© Macmillan Publishers Limited 1992

Authors and Affiliations

  • Philip A. Poole-Wilson

There are no affiliations available

Personalised recommendations