Skip to main content

Ion Movements Early in Myocardial Ischaemia: Relation to Arrhythmias, Early Contractile Failure and Tissue Necrosis

  • Chapter
Myocardial Response to Acute Injury

Abstract

Myocardial infarction is usually the result of obstruction to flow in a coronary artery as a consequence of rupture of an atheromatous plaque and associated thrombosis. More rarely myocardial infarction (but often myocardial ischaemia) is related to an increased workload on the heart in the presence of limited blood flow. The major consequences are arrhythmias leading to sudden death, reduction of the ability of the myocytes to contract leading to heart failure, and cell necrosis leading to scar formation, remodelling of the residual myocardium and heart failure. Many of the key events, and, in particular, arrhythmias, early contractile failure and cell necrosis have been linked to alterations in ion homoeostatis within the myocardial cell. Indeed, some authors have argued that the ion changes associated with the metabolic consequences of reduced oxygen supply can account for almost all these observed effects. Alternatively it may be that during ischaemia damage to structures within the myocardial cell initiates cell damage and finally results in cell necrosis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  • Allen, D. G., Lee, J. A. and Smith, G. L. (1989). The consequences of simulated schaemia on intracellular Ca2+ and tension in isolated ferret ventricular muscle. J. Physiol., 410, 297–323

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Allen, D. G., Morris, P. G., Orchard, C. H. and Pirolo, J. S. (1985). A nuclear magnetic resonance study of metabolism in the ferret heart during hypoxia and inhibition of glycolysis. J. Physiol., 361, 185–204

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Allen, D. G. and Orchard, C. H. (1983). Intracellular calcium concentration during hypoxia and metabolic inhibition in mammalian ventricular muscle. J. Physiol., 339, 107–122

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Allen, D. G. and Orchard, C. H. (1984). Measurement of intracellular calcium concentration in heart muscle: the effects of inotropic interventions and hypoxia. J. Mol. Cell. Cardiol., 16,117–128

    Article  PubMed  CAS  Google Scholar 

  • Allen, D. G. and Orchard, C. H. (1987). Myocardial contractile function during ischaemia and hypoxia. Circ. Res., 60, 153–168

    Article  PubMed  CAS  Google Scholar 

  • Balschi, J.A., Frazer, J. C., Fetters, J. K., Clarke, K., Springer, C. S., Smith, T. W. and Ingwall, J. S. (1985). Shift reagent and 23Na NMR discriminates between extra and intra cellular sodium pools in ischemic heart. Circulation, 72, 355

    Google Scholar 

  • Braunwald, E. and Kloner, R. A. (1982). The stunned myocardium: prolonged, postischemic ventricular dysfunction. Circulation, 66, 1146–1149

    Article  PubMed  CAS  Google Scholar 

  • Carmeliet, E. (1978). Cardiac transmembrane potentials and metabolism. Circ. Res., 42, 577–587

    Article  PubMed  CAS  Google Scholar 

  • Case, R. B. (1971). Ion alterations during myocardial ischaemia. Cardiology, 56, 245–262

    Article  PubMed  CAS  Google Scholar 

  • Chierchia, S., Brunelli, C., Simonetti, I., Lazzari, M. and Maseri, A. (1980). Sequence of events in angina at rest: primary reduction in coronary flow. Circulation, 61, 759–768

    Article  PubMed  CAS  Google Scholar 

  • Cobbe, S. M. and Poole-Wilson, P. A. (1982). Continuous coronary sinus and arterial pH monitoring during pacing induced ischaemia in coronary artery disease. Br. Heart J., 47, 369–374

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Conrad, G. L., Rau, E. E. and Shine, K. I. (1979). Creatine kinase release, potassium-42 content, and mechanical performance in anoxic rabbit myocardium. J. Clin. Invest., 64, 155–161

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Crake, T., Crean, P., Shapiro, L., Canepa-Anson, R. C. and Poole-Wilson, P. A. (1988). Continuous recording of coronary sinus oxygen saturation during atrial pacing in patients with coronary artery disease or with syndrome X. Br. Heart J., 59, 31–38

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Crake, T., Crean, P., Shapiro, L. M., Rickards, A. F. and Poole-Wilson, P. A. (1987a). Acidosis in heart muscle after acute coronary occlusion in man: studies during angioplasty. Br. Heart J., 57, 77

    Google Scholar 

  • Crake, T., Kirby, M. S. and Poole-Wilson, P. A. (1987b). Potassium efflux from the myocardium during hypoxia: role of lactate ions. Cardiovasc. Res., 21, 886–891

    Article  PubMed  CAS  Google Scholar 

  • Crake, T. and Poole-Wilson, P. A. (1990). Calcium exchange in rabbit myocardium during and after hypoxia: role of sodium-calcium exchange. J. Mot. Cell. Cardiol., 22, 1051–1064

    Article  CAS  Google Scholar 

  • Donaldson, R. M., Taggart, P., Bennett, J. G. and Rickards, A. F. (1984). Study of electrophysiological ischaemic events during coronary angioplasty. Texas Heart Inst. J., 11, 24–30

    CAS  Google Scholar 

  • Ellis, D. and Noireaud, J. (1987). Intracellular pH in sheep Purkinje fibres and ferret papillary muscles during hypoxia and recovery. J. Physiol., 383, 125–141

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fiolet, J. W. T., Baartscheer, A., Schumacher, C. A., Coronel, R. and ter Welle, H. F. (1984). The change of free energy of ATP hydrolysis during global ischaemia and hypoxia in the rat heart. Its possible role in the regulation of transsarcolemmal sodium and potassium gradients. J. Mot. Cell. Cardiol., 16, 1023–1036

    Article  CAS  Google Scholar 

  • Gaspardone, A., Shine, K. I., Seabrooke, S. R. and Poole-Wilson, P. A. (1986). Potassium loss from rabbit myocardium during hypoxia; evidence for passive efflux linked to anion extrusion. J. Mot. Cell. Cardiol., 18, 389–399

    Article  CAS  Google Scholar 

  • Gasser, R. N. A. and Vaughan-Jones, R. D. (1990). Mechanism of potassium efflux and action potential shortening during ischaemia in isolated mammalian cardiac muscle. J. Physiol., 431, 713–741

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gudbjarnason, S., Mathes, P. and Ravens, K. G. (1970). Functional compartmentalisation of ATP and creatine phosphate in heart muscle. J. Mot. Cell. Cardiol., 1, 325–339

    Article  CAS  Google Scholar 

  • Holmberg, S. R. M., Cumming, D. V. E., Kusuma, Y., Hearse, D. J., Poole-Wilson, P. A., Shattock, M. J. and Williams, A. J. (1991). Reactive oxygen species modify the structure and function of the cardiac sarcoplasmic reticulum calcium-release channel. Cardioscience, 2, 19–25

    PubMed  CAS  Google Scholar 

  • Jiang, C., Crake, T. and Poole-Wilson (1991). Inhibition of potassium efflux from hypoxic rabbit myocardium by glibenclamide and barium. Cardiovasc. Res. (in press)

    Google Scholar 

  • Kantor, P. F., Coetzee, W. A., Carmeliet, E. E., Dennis, S. C. and Opie, L. H. (1990). Reduction of ischemic K+ loss and arrhythmias in rat hearts. Effect of glibenclamide, a sulphonylurea. Circ. Res., 66, 478–485

    Article  PubMed  CAS  Google Scholar 

  • Kihara, Y., Grossman, W. and Morgan, J. P. (1989). Direct measurement of changes in intracellular calcium transients during hypoxia, ischemia, and reperfusion of the intact mammalian heart. Circ. Res., 65, 1029–1044

    Article  PubMed  CAS  Google Scholar 

  • Kleber, A. G. (1983). Resting membrane potential, extracellular potassium activity and intracellular sodium activity during acute global ischaemia in isolated perfused guinea pig hearts. Circ. Res., 52, 442–450

    Article  PubMed  CAS  Google Scholar 

  • Kleber, A. G. and Wilde, A. A. M. (1986). Regulation of intracellular sodium ions in acute reversible myocardial ischemia: a perspective. J. Mot. Cell. Cardiol., 18 (Suppl. 4), 27–30

    Article  CAS  Google Scholar 

  • Knopf, H., Theising, R., Moon, C. H. and Hirche, Hj. (1990). Continuous determination of Ion Movements Early in Myocardial Ischaemia 95 extracellular space and changes of K+, Na+, Ca2+, and H+ during global ischaemia in isolated rat hearts. J. Mol. Cell. Cardiol., 22, 1259–1283

    Article  PubMed  CAS  Google Scholar 

  • Kodama, I., Wilde, A., Janse, M. J., Durrer, D. and Yamada, K. (1984). Combined effects of hypoxia, hyperkalaemia and acidosis on membrane action potential and excitability of guinea-pig ventricular muscle. J. Mol. Cell. Cardiol., 16, 247–259

    Article  PubMed  CAS  Google Scholar 

  • Lee, H.-C., Smith, N., Mohabir, R. and Clusin, W. T. (1987). Cytosolic calcium transients from the beating mammalian heart. Proc. Natl Acad. Sci. USA, 84, 7793–7797

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Logic, J. R. (1973). Enhancement of vulnerability of the ventricle to fibrillation (VF) by regional hyperkalaemia. Cardiovasc. Res., 7, 501–507

    Article  PubMed  CAS  Google Scholar 

  • Marban, E., Kitakaze, M., Kusuoka, H., Porterfield, J. K. and Yue, D. T. (1987). Intracellular free calcium concentration measured with 19F NMR spectroscopy in intact ferret hearts. Proc. Natl Acad. Sci. USA, 84, 6005–6009

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mathur, P. P. and Case, R. B. (1973). Phosphate loss during reversible myocardial ischaemia. J. Mol. Cell. Cardiol., 5, 375–393

    Article  PubMed  CAS  Google Scholar 

  • Murphy, E., Aiton, J. F., Horres, C. R. and Lieberman, M. (1983). Calcium elevation in cultured heart cells: its role in cell injury. Am. J. Phys., 245, C316–C321

    CAS  Google Scholar 

  • Noma, A. (1983). ATP-regulated K+ channels in cardiac muscle. Nature, 305, 147–148

    Article  PubMed  CAS  Google Scholar 

  • Noma, A. and Shibasaki, T. (1985). Membrane current through adenosine-triphosphate-regulated potassium channels in guinea-pig ventricular cells. J. Physiol., 363, 463–480

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Poole-Wilson, P. A. (1984a). Potassium and the heart. In Morgan, D. B. (Ed.), Clinics in Endocrinology and Metabolism: Electrolyte Disorders. Saunders, London, pp. 249–268

    Google Scholar 

  • Poole-Wilson, P. A. (1984b). What causes cell death? In Hearse, D. J. and Yellon, D. M. (Eds), Therapeutic Approaches to Myocardial Infarct Size Limitation. Raven Press, New York, pp. 43–60

    Google Scholar 

  • Poole-Wilson, P. A. (1985). The nature of myocardial damage following reoxygenation. In Parratt, J. R. (Ed.), Control and Manipulation of Calcium Movement. Raven Press, New York, pp. 325–340

    Google Scholar 

  • Poole-Wilson, P. A. (1990). Loss of hydrogen and potassium ions after short periods of myocardial ischaemia. In Serruys, P. W., Simon, R. and Beatt, K. J. (Eds), PTCA: An Investigational Tool and Non-Operative Treatment of Acute Ischaemia. Kluwer Academic, Dordrecht, pp. 121–126

    Chapter  Google Scholar 

  • Poole-Wilson, P. A., Fleetwood, G. and Cobbe, S. M. (1983). Early contractile failure in myocardial ischaemia-role of acidosis. In Myocardial Ischaemia and Protection. Churchill Livingstone, Edinburgh, pp. 9–17

    Google Scholar 

  • Poole-Wilson, P. A., Harding, D. P., Bourdillon, P. D. V. and Tones, M. A. (1984). Calcium out of control. J. Mol. Cell. Cardiol., 16, 175–187

    Article  PubMed  CAS  Google Scholar 

  • Poole-Wilson, P. A. and Tones, M. A. (1988). Sodium exchange during hypoxia and on reoxygenation in the isolated rabbit heart. J. Mol. Cell. Cardiol., 20, (Suppl. II), 15–22

    Article  PubMed  CAS  Google Scholar 

  • Rau, E. E. and Langer, G. A. (1978). Dissociation of energetic state and potassium loss from anoxic myocardium. Am. J. Physiol., 235, H537–H543

    PubMed  CAS  Google Scholar 

  • Serruys, P. W., Wijns, W., Van den Brond, M., Meij, S., Slager, C., Schuubiers, J. C. H., Hugenholtz, P. G. and Brower, R. W. (1984). Left ventricular performance, regional blood flow, wall motion and lactate metabolism during transluminal angioplasty. Circulation, 70, 25–36

    Article  PubMed  CAS  Google Scholar 

  • Shen, A. C. and Jennings, R. B. (1972). Myocardial calcium and magnesium in acute ischemic myocardial injury. Am. J. Pathol., 67, 417–440

    PubMed  PubMed Central  CAS  Google Scholar 

  • Sonnenblick, E. H., Spotnitz, H. M., Spiro, D. (1964). Role of the sarcomere in ventricular function and the mechanism of heart failure. Circ. Res., 24 (Suppl. 2), 70–80

    Google Scholar 

  • Steenbergen, C., Hill, M. L. and Jennings, R. B. (1985). Volume regulation and plasma membrane injury in aerobic, anaerobic and ischemic myocardium in vitro: effects of osmotic cell swelling on plasma membrane integrity. Circ. Res., 57 (6), 864–875

    Article  PubMed  CAS  Google Scholar 

  • Steenbergen, C., Murphy, E., Levy, L. and London, R. E. (1987). Elevation in cytosolic free calcium concentration early in myocardial ischemia in perfused rat heart. Circ. Res., 60, 700–707

    Article  PubMed  CAS  Google Scholar 

  • Stern, M. D., Silverman, H. S., Houser, S. R., Josephson, R. A., Capogrossi, M. C., Nichols, C. G., Lederer, W. J. and Lakatta, E. G. (1988). Anoxic contractile failure in rat myocytes is caused by failure of intracellular calcium release due to alteration of the action potential. Proc. Natl Acad. Sci. USA, 85, 6954–6958

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tani, M. and Neely, J. R. (1989). Role of intracellular Na+ and Ca2+ over load and depressed recovery of ventricular function of reperfused ischemic rat hearts: possible involvement of H+-Na+ and Na+-Ca2+ exchange. Circ. Res., 65, 1045–1056

    Article  PubMed  CAS  Google Scholar 

  • Venkatesh, N., Lamp, S. T. and Weiss, J. N. (1989). Effects of sulphonylureas on K+ loss during myocardial ischaemia and metabolic inhibition. Circulation, 80, 11–607

    Google Scholar 

  • Vleugels, A., Vereecke, J. and Carmeliet, E. (1980). Ionic currents during hypoxia in voltage-clamped cat ventricular muscle. Circ. Res., 47, 501–508

    Article  PubMed  CAS  Google Scholar 

  • Watts, J. A., Norris, T. A., London, R. E., Steenbergen, C. and Murphy, E. (1990). Effects of diltiazem on lactate, ATP, and cytosolic free calcium levels in ischemic hearts. J. Cardiovasc. Pharmacol., 15, 44–49

    Article  PubMed  CAS  Google Scholar 

  • Webb, S. C. and Poole-Wilson, P. A. (1985). Potassium exchange in the human heart during atrial pacing and myocardial ischaemia. Br. Heart J., 290, 1861–1865

    Google Scholar 

  • Webb, S. C., Rickards, A. F. and Poole-Wilson, P. A. (1983). Coronary sinus potassium concentration recorded during coronary angioplasty. Br. Heart J., 50, 146–148

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Weisman, H. F., Bush, D. E., Mannisi, J. A., Weisfeldt, M. L. and Healy, B. (1988). Cellular mechanisms of myocardial infarct expansion. Circulation, 78, 186–201

    Article  PubMed  CAS  Google Scholar 

  • Weiss, J. and Shine, K. I. (1981). Extracellular K+ accumulation during early myocardial ischemia. Implications for arrhythmogenesis. J. Mol. Cell. Cardiol., 13, 699–704

    Article  PubMed  CAS  Google Scholar 

  • Weiss, J. and Shine, K. I. (1982a). Extracellular K+ accumulation during myocardial ischaemia in isolated rabbit heart. Am. J. Physiol., 242, H619–H628

    PubMed  CAS  Google Scholar 

  • Weiss, J. and Shine, K. I. (1982b). (K+)o accumulation and electrophysiological alterations during early myocardial ischaemia. Am. J. Physiol., 243, H318–H327

    PubMed  CAS  Google Scholar 

  • Weiss, J. and Shine, K. I. (1986). Effects of heart rate on extracellular [K+] accumulation during myocardial ischemia. Am. J. Phys., 250, H982–H991

    CAS  Google Scholar 

  • Whalen, D. A., Jr., Hamilton, D. G., Ganote, C. E. and Jennings, R. B. (1974). Effect of a transient period of ischemia on myocardial cells, I. Effects on cell volume regulation. Am. J. Pathol., 74, 381–398

    PubMed  PubMed Central  CAS  Google Scholar 

  • Wilde, A. A. M., Escande, D., Schumacher, C. A., Thuringer, D., Mestre, M., Fiolet, J. W. T. and Janse, M. J. (1990). Potassium accumulation in the globally ischaemic mammalian heart. A role for the ATP-sensitive channel. Circ. Res., 67, 835–843

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Copyright information

© 1992 Macmillan Publishers Limited

About this chapter

Cite this chapter

Poole-Wilson, P.A. (1992). Ion Movements Early in Myocardial Ischaemia: Relation to Arrhythmias, Early Contractile Failure and Tissue Necrosis. In: Parratt, J.R. (eds) Myocardial Response to Acute Injury. Palgrave, London. https://doi.org/10.1007/978-1-349-12522-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-349-12522-7_6

  • Publisher Name: Palgrave, London

  • Print ISBN: 978-1-349-12524-1

  • Online ISBN: 978-1-349-12522-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics