Effects of Endocardial Damage on Myocardial Contraction

  • Ajay M. Shah
  • Andrew H. Henderson
Chapter

Abstract

The endocardium of the heart has long been regarded merely as a passive interface between underlying myocardium and blood in the cardiac cavities. It comprises a monolayer of closely apposed endothelial cells overlying a thin layer of connective tissue, but it has a relatively large surface area because of its complex trabeculation (Becker, 1964; Streeter, 1979). Suggested functions of endocardium have included mechanical prevention of cardiac overdistension (Becker, 1964), facilitation of nutrient supply to subendocardial myocardium (Howse et al., 1970; Albelda et al., 1987) and antithrombotic properties (Brandt et al., 1984). It has now become clear that acute endocardial damage can influence myocardial contraction.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. Ahlman, A. (1985). Serotonin and the carcinoid syndrome. In Vanhoutte, P. M. (Ed.), Serotonin and the Cardiovascular System. Raven Press, New York, pp. 199–222Google Scholar
  2. Albelda, S. M., Karnovsky, M. J. and Fishman, A. P. (1987). Perspectives in endothelial cell biology. J. Appl. Physiol., 4, 1345–1348Google Scholar
  3. Allen, D. G. and Kentish, J. C. (1985). The cellular basis of the length-tension relation in cardiac muscle. J. Mol. Cell. Cardiol., 17, 821–840PubMedCrossRefGoogle Scholar
  4. Allen, D. G. and Kurihara, S. (1982). The effects of muscle length on intracellular calcium transients in mammalian cardiac muscle. J. Physiol., 327, 79–94PubMedPubMedCentralCrossRefGoogle Scholar
  5. Allen, D. G., Lee, J. A. and Smith, G. L. (1989). The consequences of simulated ischaemia on intracellular Ca2+ and tension in isolated ferret ventricular muscle. J. Physiol., 410, 297–323PubMedPubMedCentralCrossRefGoogle Scholar
  6. Allen, D. G., Nichols, C. G. and Smith, G. L. (1988). The effects of changes in muscle length during diastole on the calcium transient in ferret ventricular muscle. J. Physiol., 406, 359–370PubMedPubMedCentralCrossRefGoogle Scholar
  7. Allen, D. G. and Orchard, C. H. (1983). The effects of changes of pH on intracellular calcium transients in mammalian cardiac muscle. J. Physiol., 335, 555–567PubMedPubMedCentralCrossRefGoogle Scholar
  8. Angus, J. A. and Cocks, T. M. (1989). Endothelium-derived relaxing factor. Pharmac. Ther., 41,303–352CrossRefGoogle Scholar
  9. Becker, B. J. P. (1964). Studies on the human mural endocardium. J. Pathol. Bacteriol., 88, 541–547PubMedCrossRefGoogle Scholar
  10. Blumenthal, D. K., Stull, J. T. and Gill, G. N. (1978). Phosphorylation of cardiac troponin by guanosine 3′:5′-monophosphate-dependent kinase. J. Biol. Chem., 253, 334–356Google Scholar
  11. Brandt, R., Nowak, J. and Sonnenfeld, T. (1984). Prostaglandin formation from exogenous precursor in homogenates of human cardiac tissue. Basic Res. Cardiol., 79, 135–141PubMedCrossRefGoogle Scholar
  12. Brockington, I. F. and Olsen, E. G. J. (1973). Löffler’s endocarditis and Davies’ endomyocardial fibrosis. Am. Heart J., 85, 308–322CrossRefGoogle Scholar
  13. Brutsaert, D. L. (1989). The endocardium. Ann. Rev. Physiol., 51, 263–273CrossRefGoogle Scholar
  14. Brutsaert, D. L., Claes, V. A. and Sonnenblick, E. H. (1971). Velocity of shortening of unloaded heart muscle and the length-tension relation. Circ. Res., 29, 63–75PubMedCrossRefGoogle Scholar
  15. Brutsaert, D. L. and Meulemans, A. L. (1988). Transendothelial ionic exchange underlies endocardial control of myocardial performance. Biophys. J., 53, 59aGoogle Scholar
  16. Brutsaert, D. L., Meulemans, A. L., Andries, L. J. and Demolder, M. J. (1990). Ultrasound selectively destroys endocardial endothelium in isolated cardiac muscle. Eur. Heart J., 11 (Suppl.), 43CrossRefGoogle Scholar
  17. Brutsaert, D. L., Meulemans, A. L., Sipido, K. R. and Sys, S. U. (1988). Effects of damaging the endocardial surface on the mechanical performance of isolated heart muscle. Circ. Res., 62,358–366PubMedCrossRefGoogle Scholar
  18. Chappell, S., Henderson, A. H. and Lewis, M. (1986). Characterisation of the mechanical behaviour of isolated papillary muscle preparations of the ferret. J. Pharmacol. Meth., 15, 35–49CrossRefGoogle Scholar
  19. Cheng, C.-P., Freeman, G. L., Santamore, W. P., Constantinescu, M. S. and Little, W. C. (1990). Effect of loading conditions, contractile state, and heart rate on early diastolic left ventricular filling in conscious dogs. Circ. Res., 66, 814–823PubMedCrossRefGoogle Scholar
  20. Collins, P., Griffith, T. M., Henderson, A. H. and Lewis, M. J. (1986). Endothelium-derived relaxing factor alters calcium fluxes in rabbit aorta: a cyclic guanosine monophosphatemediated effect. J. Physiol., 381, 427–437PubMedPubMedCentralCrossRefGoogle Scholar
  21. De Hert, S. G., Gillebert, T. C., Jagenau, A. H. and Brutsaert, D. L. (1990). Endocardial modulation of left ventricular performance depends on prevailing load. Circulation, 82, 111–567Google Scholar
  22. Forstermann, U., Mülach, A., Böhme, E. and Busse, R. (1986). Stimulation of soluble guanylate cyclase by an acetylcholine-induced endothelium-derived factor from rabbit and canine arteries. Circ. Res., 58, 531–538PubMedCrossRefGoogle Scholar
  23. Furchgott, R. F. (1983). Role of endothelium in response of vascular smooth muscle. Circ. Res., 53, 557–573PubMedCrossRefGoogle Scholar
  24. Furchgott, R. F. and Zawadzki, J. V. (1980). The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature, 288, 373–376PubMedCrossRefGoogle Scholar
  25. Furlong, B., Henderson, A. H., Lewis, M. J. and Smith, J. A. (1987). Endothelium-derived relaxing factor inhibits in vitro platelet aggregation. Br. J. Pharmacol., 90, 687–692PubMedPubMedCentralCrossRefGoogle Scholar
  26. Gillebert, T. C., De Hert, D. G., Andries, L. J., Jagenau, A. H. and Brutsaert, D. L. (1990). Altering endocardial function by ultrasound modulates left ventricular performance. Eur. Heart J., 11 (Suppl.), 79CrossRefGoogle Scholar
  27. Greenbaum, R. A., Ho, S. Y., Gibson, D. G., Becker, A. E. and Anderson, R. H. (1981). Left ventricular fibre architecture in man. Br. Heart J., 45, 248–263PubMedPubMedCentralCrossRefGoogle Scholar
  28. Griffith, T. M., Edwards, D. H., Lewis, M. J. and Henderson, A. H. (1985). Evidence that cyclic guanosine monophosphate (cGMP) mediates endothelium-dependent relaxation. Eur. J. Pharmacol., 112, 195–202PubMedCrossRefGoogle Scholar
  29. Griffith, T. M., Edwards, D. H., Lewis, M. J., Newby, A. C. and Henderson, A. H. (1984). The nature of endothelium-derived vascular relaxant factor. Nature, 308, 645–647PubMedCrossRefGoogle Scholar
  30. Griffith, T. M., Lewis, M. J., Newby, A. C. and Henderson, A. H. (1988). Endotheliumderived relaxing factor. J. Am. Coll. Cardiol., 12, 797–806PubMedCrossRefGoogle Scholar
  31. Grossman, W. (1990). Diastolic dysfunction and congestive heart failure. Circulation, 81, III-1-III-7CrossRefGoogle Scholar
  32. Gryglewski, R. J., Palmer, R. M. J. and Moncada, S. (1986). Superoxide anion is involved in the breakdown of endothelium-derived relaxing factor. Nature, 320, 454–456PubMedCrossRefGoogle Scholar
  33. Henderson, A. H. and Brutsaert, D. L. (1973). An analysis of the mechanical capabilities of heart muscle during hypoxia. Cardiovasc. Res., 7, 763–776PubMedCrossRefGoogle Scholar
  34. Henderson, A. H., Brutsaert, D. L., Parmley, W. W. and Sonnenblick, E. H. (1969). Myocardial mechanisms in papillary muscles of the rat and cat. Am. J. Physiol., 217, 1273–1279PubMedGoogle Scholar
  35. Hibberd, M. G. and Jewell, B. R. (1982). Calcium- and length-dependent force production in rat ventricular muscle. J. Physiol., 329, 527–540PubMedPubMedCentralCrossRefGoogle Scholar
  36. Holzmann, S. (1982). Endothelium-induced relaxation by acetylcholine associated with larger rises in cyclic GMP in coronary arterial strips. J. Cyclic Nucleotide Res., 8, 409–419PubMedGoogle Scholar
  37. Howse, H. D., Ferrans, V. J. and Hibbs, R. G. (1970). A comparative histochemical and electron microscopic study of the surface coatings of cardiac muscle cells. J. Mot. Cell. Cardiol., 1, 157–168CrossRefGoogle Scholar
  38. Ishida, Y., Meisner, J. S., Tsujiokak, C., Tallo, J. I., Yoran, C., Frater, R. W. M. and Yellin, E. L. (1986). Left ventricular filling dynamics: influence of left ventricular relaxation and left atrial pressure. Circulation, 74, 187–196PubMedCrossRefGoogle Scholar
  39. Katsuki, S., Arnold, N., Mittal, C. and Murad, F. (1977). Stimulation of guanylate cyclase by sodium nitroprusside, nitroglycerin and nitric oxide in various tissue preparations and comparison to the effects of sodium azide and hydroxylamine. J. Cyclic Nucleotide Res., 3, 23–25PubMedGoogle Scholar
  40. Lew, W. Y. W. and Rasmussen, C. M. (1989). Influence of non-uniformity on rate of left ventricular pressure fall in the dog. Am. J. Physiol., 256, H222-H232PubMedGoogle Scholar
  41. Lewis, M. J., Shah, A. M., Smith, J. A. and Henderson, A. H. (1990). Does endocardium modulate myocardial contractile performance? Cardioscience, 1, 83–87PubMedGoogle Scholar
  42. Li, K., Calderone, A. and Rouleau, J. L. (1990a). Reduced myocardial alpha-adrenergic contractile responsiveness in pacing-overdrive model of heart failure in the dog: potential role of the endocardial endothelium. Eur. Heart J., 11 (Suppl.), 79Google Scholar
  43. Li, K., Stewart, D. and Rouleau, J. I. (1990b). The endocardial endothelium modifies the contractile response of isolated rabbit papillary muscle to endothelin. Eur. Heart J., 11 (Suppl.), 79Google Scholar
  44. Lincoln, T. M. and Corbin, J. D. (1978). Purified cyclic GMP-dependent protein kinase catalyzes the phosphorylation of cardiac troponin inhibitory subunit (TN-I). J. Biol. Chem., 253, 337–339PubMedGoogle Scholar
  45. MacIntyre, D. E., Pearson, J. D. and Gordon, J. L. (1978). Localisation and stimulation of prostacyclin production in vascular cells. Nature., 271, 549–555PubMedCrossRefGoogle Scholar
  46. Martin, W., Villani, G. M., Jothianandan, D. and Furchgott, R. F. (1985). Selective blockade of endothelium-dependent and glyceryl trinitrate-induced relaxation by haemoglobin and by methylene blue in the rabbit aorta. J. Pharmacol. Exp. Ther., 232, 708–716PubMedGoogle Scholar
  47. Meulemans, A. L., Andries, L. J. and Brutsaert, D. L. (1990a). Endocardial endothelium mediates positive inotropic response to alphal-adrenoceptor agonist in mammalian heart. J. Mol. Cell. Cardiol., 22, 667–685PubMedCrossRefGoogle Scholar
  48. Meulemans, A. L., Andries, L. J. and Brutsaert, D. L. (1990b). Does endocardial endothelium mediate positive inotropic response to angiotensin I and angiotensin II. Circ. Res., 66, 1591–1601PubMedCrossRefGoogle Scholar
  49. Meulemans, A. L., Demolder, M. J. and Brusaert, D. L. (1990c). Endocardial endothelium mediates shear-stress-induced modulation of mechanical performance in superfused cardiac muscle. Eur. Heart J., 11 (Suppl.), 79Google Scholar
  50. Moore, P. K., Al-Swayeh, O. A., Chong, N. W. S., Evans, R., Mirzazadeh, S. and Gibson, A. (1989). L-N-nitroarginine (NOARG) a novel, L-arginine-reversible inhibitor of endothelium-dependent vasodilatation in vitro. Br. J. Pharmacol., 99, 408–412CrossRefGoogle Scholar
  51. Noronha-Dutra, A. A., Steen, E. M. and Woolf, N. (1984). The early changes induced by isoprotenol in the endocardium and adjacent myocardium. Am. J. Pathol., 114, 231–239PubMedPubMedCentralGoogle Scholar
  52. Olsen, E. G. J. (1975). Pathological recognition of cardiomyopathy. Postgrad. Med. J., 51, 277–281PubMedPubMedCentralCrossRefGoogle Scholar
  53. Olsen, E. G. J. and Spry, C. J. F. (1985). Relation between eosinophilia and endomyocardial disease. Prog. Cardiovasc. Dis., 27, 241–254PubMedCrossRefGoogle Scholar
  54. Palmer, R. M. J., Ashton, D. S. and Moncada, S. (1988a). Vascular endothelial cells synthesize nitric oxide from L-arginine. Nature, 333, 664–666PubMedCrossRefGoogle Scholar
  55. Palmer, R. M. J., Ferrige, A. G. and Moncada, S. (1987). Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor. Nature, 327, 524–526PubMedCrossRefGoogle Scholar
  56. Palmer, R. M. J., Rees, D. D., Ashton, D. S. and Moncada, S. (1988b). L-Arginine is the physiological precursor for the formation of nitric oxide in endothelium-dependent relaxation. Biochem. Biophys. Res. Comm., 153, 1251–1256PubMedCrossRefGoogle Scholar
  57. Parmley, W. W. and Chuck, L. (1973). Length-dependent changes in myocardial contractile state. Am. J. Physiol., 224, 1195–1199PubMedGoogle Scholar
  58. Radomski, M. W., Palmer, R. M. J. and Moncada, S. (1987a). The role of nitric oxide and cGMP in platelet adhesion to vascular endothelium. Biochem. Biophys. Res. Comm., 148, 1482–1484PubMedCrossRefGoogle Scholar
  59. Radomski, M. W., Palmer, R. M. J. and Moncada, S. (1987b). Comparative pharmacology of endothelium-derived relaxing factor, nitric oxide and prostacyclin in platelets. Br. J. Pharmacol., 92, 181–187PubMedPubMedCentralCrossRefGoogle Scholar
  60. Rapoport, R. M. and Murad, F. (1983). Agonist-induced endothelium-dependent relaxation in rat thoracic aorta may be mediated through cGMP. Circ. Res., 52, 352–357PubMedCrossRefGoogle Scholar
  61. Rubanyi, G. M., Romero, J. C. and Vanhoutte, P. M. (1986). Flow-induced release of endothelium-derived relaxing factor. Am. J. Physiol., 250, H1145-H1149PubMedGoogle Scholar
  62. Sanchez-Ferrer, C. F., Burnett, J. C., Lorenz, R. R. and Vanhoutte, P. M. (1990). Possible modulation of release of atrial natriuretic factor by endothelium-derived relaxing factor. Am. J. Physiol., 259, H982-H986PubMedGoogle Scholar
  63. Shah, A. M. (1989). The Role of Endocardium in the Modulation of Myocardial Contraction. MD Thesis, University of Wales, CardiffGoogle Scholar
  64. Shah, A. M., Andries, L. J., Meulemans, A. L. and Brutsaert, D. L. (1989a). Endocardium modulates myocardial inotropic response to 5-hydroxytryptamine. Am. J. Physiol., 257, H1790-H1797PubMedGoogle Scholar
  65. Shah, A. M., Brutsaert, D. L., Meulemans, A. L., Andries, L. J. and Capron, M. (1990a). Eosinophils from hypereosinophilic patients damage endocardium of isolated feline heart muscle preparations. Circulation, 81, 1081–1088PubMedCrossRefGoogle Scholar
  66. Shah, A. M., Lewis, M. J. and Henderson, A. H. (1989b). Is endocardial control of myocardial contraction mediated via cyclic GMP? Br. J. Pharmacol., 97, 388PGoogle Scholar
  67. Shah, A. M., Lewis, M. J. and Henderson, A. H. (1989c). Elevating cGMP mimics the characteristic myocardial effect of selective endocardial removal. Eur. Heart J., 10 (Suppl.), 333Google Scholar
  68. Shah, A. M., Lewis, M. J. and Henderson, A. H. (1989d). Inotropic effects of endothelin in ferret ventricular myocardium. Eur. J. Pharmacol., 163, 365–367PubMedCrossRefGoogle Scholar
  69. Shah, A. M., Lewis, M. J. and Henderson, A. H. (1991a). Effects of 8-bromo-cyclic GMP on contraction and on inotropic response of ferret cardiac muscle. J. Mol. Cell. Cardiol., 23, 55–64PubMedCrossRefGoogle Scholar
  70. Shah, A. M., Meulemans, A. L. and Brutsaert, D. L. (1989e). Myocardial inotropic responses to aggregating platelets and modulation by the endocardium. Circulation, 79, 1315–1323PubMedCrossRefGoogle Scholar
  71. Shah, A. M., Smith, J. A. and Lewis, M. J. (1991b). The role of endocardium in the modulation of contraction of isolated papillary muscles of the ferret. J. Cardiovasc. Pharmacol. (in press)Google Scholar
  72. Shah, A. M., Smith, J. A. and Lewis, M. J. (1990b). Modulation of myocardial relaxation by factors released by endocardium. Biophys. J., 57, 11aGoogle Scholar
  73. Shah, A. M., Smith, J. A., Lewis, M. J. and Henderson, A. H. (1989f). Endocardial control of myocardial contraction. J. Mol. Cell. Cardiol., 21, S23CrossRefGoogle Scholar
  74. Shirahase, H., Fujiwara, M., Usui, H., Kurahashi, K. (1987). A possible role of thromboxane A2 in maintaining resting tone and producing contractile responses to acetylcholine and arachidonic acid in canine cerebral arteries. Blood Vessels, 24, 117–119PubMedGoogle Scholar
  75. Smith, J. A., Shah, A. M. and Lewis, M. J. (1991). Factors released from endocardium of the ferret and pig modulate myocardial contraction. J. Physiol., (in press)Google Scholar
  76. Spry, C. J. F. (1987). Eosinophils and endocardial fibrosis. In Kawai, C. and Abelmann, W. (Eds), Cardiomyopathy Update: 1. Pathogenesis of Myocarditis and Cardiomyopathy. University of Tokyo Press, Tokyo, p. 293Google Scholar
  77. Streeter, D. D. (1979). Gross morphology and fiber geometry of the heart. In Berne, R. M. and Sperelakis, N. (Eds), Handbook of Physiology, Section 2: The Cardiovascular System. American Physiological Society, Bethesda, pp. 61–112Google Scholar
  78. Streeter, D. D., Spotnitz, H. M., Patel, D. P., Ross, J., Jr., and Sonnenblick, E. H. (1969). Fibre orientation in the canine left ventricle during diastole and systole. Circ. Res., 24, 339–347PubMedCrossRefGoogle Scholar
  79. Strobeck, J. E. and Sonnenblick, E. H. (1986). Myocardial contractile properties and ventricular performance. In Fozzard, H. A., Haber, E., Jennings, R. B., Katz, A. M. and Morgan, H. E. (Eds), The Heart and Cardiovascular System: Scientific Foundations. Raven Press, New York, pp. 31–49Google Scholar
  80. Tada, M. and Katz, A. (1982). Phosphorylation of the sarcoplasmic reticulum and sar-colemma. Ann. Rev. Physiol., 44, 401–423CrossRefGoogle Scholar
  81. Tornebrandt, K., Eskilsson, J. and Nobin, A. (1986). Heart involvement in metastatic carcinoid disease. Clin. Cardiol., 9, 13–19PubMedCrossRefGoogle Scholar
  82. Waldmann, S. A., Rapoport, R. M. and Murad, F. (1984). Atrial natriuretic factor selectively activates particulate guanylate cyclase and elevates cyclic GMP in rat tissues. J. Biol. Chem., 259, 14332–14334Google Scholar
  83. Winegrad, S. (1984). Regulation of cardiac contractile proteins. Correlations between physiology and biochemistry. Circ. Res., 55, 565–574PubMedCrossRefGoogle Scholar
  84. Yanagisawa, M., Kurihara, H., Kimura, S., Tomobe, Y., Kobayashi, M., Mitsui, Y., Yazaki, Y., Goto, K. and Masaki, T. (1988). A novel potent vasoconstrictor peptide produced by vascular endothelial cells. Nature, 332, 411–415PubMedCrossRefGoogle Scholar

Copyright information

© Macmillan Publishers Limited 1992

Authors and Affiliations

  • Ajay M. Shah
  • Andrew H. Henderson

There are no affiliations available

Personalised recommendations