Skip to main content

Part of the book series: Topics in Molecular and Structural Biology ((TMSB))

Abstract

The non-covalent physical-chemical interaction forces between polar polymers, biopolymers and/or various inert polar surfaces, particles or cells are of three fundamentally different classes: (1) apolar, electrodynamic, or Lifshitz-van der Waals (LW) interactions (Chaudhury, 1984); (2) polar, or Lewis acid-base (AB) interactions, which in aqueous media are mainly hydrogen-bonding interactions (van Oss et al., 1988a); (3) electrostatic (EL), or Coulombic interactions (van Oss et al., 1988a). In addition, thermal or Brownian movement (BR) interactions may play a role which, while quantitatively fairly unimportant in interactions between large molecules and particles, may not always be negligible when smaller molecules are involved. The first three interactions can be either attractive or repulsive, independent of the sign of the other two varieties, in any particular case (van Oss et al., 1988a); BR interactions are always considered repulsive. In liquids, LW interactions can only be repulsive when acting between two different solutes or particles; AB and EL interactions can be repulsive even when acting between identical solutes or particles.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Absolom, D.R. and van Oss, C.J. (1986). The nature of the antigen—antibody bond and the factors affecting its association and dissociation. Crit. Rev. Immunol., 6, 1–46

    Google Scholar 

  • Adamson, A.W. (1982). Physical Chemistry of Surfaces. Wiley-Interscience, New York

    Google Scholar 

  • Albertsson, P. Ã…. (1986). Partition of Cell Particles and Macromolecules. WileyInterscience, New York, p. 17

    Google Scholar 

  • Albini, B., Fagundus, A.M. and Vladutiu, A.O. (1984). Circulating immune complexes. In Atassi, M.Z., van Oss, C.J. and Absolom, D.R. (Eds), Molecular Immunology. Marcel Dekker, New York, pp. 381–401

    Google Scholar 

  • Amit, A.G., Mariussa, R.A., Phillips, S.E.V. and Poljak, R.J. (1986). Three-dimensional structure of an antigen/antibody complex at 2.8 Ã… resolution. Science, 233, 747–753

    Article  Google Scholar 

  • Arnold, K., Herrmann, A., Gawrisch, K. and Pratsch, L. (1988). Water-mediated effects of PEG on membrane properties and fusion. In Ohki, S., Doyle, D., Flanagan, T.D., Hui, S.W. and Mayhew, E. (Eds), Membrane Fusion. Plenum Press, New York, pp. 255–272

    Chapter  Google Scholar 

  • Barton, A.F.M. (1983). Handbook of Solubility and Other Cohesion Parameters. CRC Press, Boca Raton, Florida

    Google Scholar 

  • Breslauer, K.J., Remeta, D.P., Chou, W.Y., Ferracote, R., Curry, J., Zaunczkowski, D., Snyder, J.G. and Marky, L.A. (1987). Proc. Natl Acad. Sci. USA, 84, 8922–8926

    Article  Google Scholar 

  • Casimir, H.B. and Polder, D. (1946). Influence of the retardation on the London-van der Waals forces. Nature, 158, 787–788

    Article  Google Scholar 

  • Chaudhury, M.K. (1984). Short-range and Long-range Forces in Colloidal and Macroscopic Systems. Dissertation, SUNY at Buffalo

    Google Scholar 

  • Christenson, H.K. (1988). Non-DLVO forces between surfaces — Solvation, hydration and capillary effects. J. Disp. Sci. Tech., 9, 171–206

    Article  Google Scholar 

  • Claesson, P.M. (1986). Forces between Surfaces Immersed in Aqueous Solutions. Dissertation, Royal Institute of Technology, Stockholm

    Google Scholar 

  • Costanzo, P.M., Giese, R.F. and van Oss, C.J. (1990). Determination of the acid-base characteristics of clay mineral surfaces by contact angle measurements — implications for the adsorption of organic solutes from aqueous media. Adhesion Sci. Technol., 4, 267–275

    Article  Google Scholar 

  • Cowley, A.C., Fuller, N.L., Rand, R.P. and Parsegian, V.A. (1978). Measurement of repulsive forces between charged phospholipid bilayers. Biochemistry, 17, 3163–3168

    Article  Google Scholar 

  • Derjaguin, B.V. (1989). Theory of Stability of Colloids and Thin Films. Consultants Bureau/Plenum Press, New York

    Google Scholar 

  • Fowkes, F.M. (1972). Donor-acceptor interactions at interfaces. J. Adhesion, 4, 155–159

    Article  Google Scholar 

  • Fowkes, F.M. (1983). Acid-base interaction in polymer adhesion. In Mittal, K.L. (Ed.), Physical-chemical Aspects of Polymer Surfaces, Vol. 2. Plenum Press, New York, pp. 583–603

    Google Scholar 

  • Fowkes, F.M., Jinnai, H., Mostafa, M.A., Anderson, F.W. and Moore, R.J. (1982). Mechanism of electric charging of particles in nonaqueous liquids. In Hair, M. and Groucher, M.D. (Eds), Colloids and Surfaces in Reprographic Technology. ACS Symposium Series, 200, 307–324

    Chapter  Google Scholar 

  • Giese, R.F., Van Oss, C.J., Norris, J. and Costanzo, P.M. (1989). Surface energies of some smectite clay minerals. In Proceedings IXth International Clay Conference, Strasbourg, France

    Google Scholar 

  • Hamaker, H.C. (1937). The London-van der Waals attraction between spherical particles. Physica, 4, 1058–1072

    Article  Google Scholar 

  • Holmes-Farley, S.R., Reamey, R.H., McCarthy, T.J., Deutch, J. and Whitesides, G.M. (1985). Acid-base behaviour of carboxylic acid groups covalently attached at the surface of polyethylene. The usefulness of contact angle in following the ionization of surface functionality. Langmuir, 1, 725–740

    Article  Google Scholar 

  • Israelachvili, J.N. (1985). Intermolecular and Surface Forces. Academic Press, London

    Google Scholar 

  • Israelachvili, J.N. and Pashley, R. (1984). Measurement of the hydrophobic interaction between two hydrophobic surfaces in aqueous electrolyte solutions. J. Colloid Interface Sci., 98, 500–514

    Article  Google Scholar 

  • Janczuk, B. and Bialopiotrowicz, T. (1989). Surface free-energy components of liquids and low energy solids and contact angles. J. Colloid Interface Sci., 127, 189–204

    Article  Google Scholar 

  • Labib, M. (1988). The origin of the surface charge on particles suspended in organic liquids. Colloids and Surfaces, 29, 293–304

    Article  Google Scholar 

  • Labib, M. and Williams, R. (1984). The use of zeta-potential measurements in organic solvents to determine the donor-acceptor properties of solid surfaces. J. Colloid Interface Sci., 97, 356–366

    Article  Google Scholar 

  • Labib, M. and Williams, R. (1986). An experimental comparison between the aqueous pH scale and the electron donicity scale. Colloid Polymer Sci., 264, 533–541

    Article  Google Scholar 

  • Le Neveu, D., Rand, R.P., Gingell, D. and Parsegian, V.A. (1977). Measurement and modification of forces between lecithin bilayers. Biophys. J., 18, 209–230

    Article  Google Scholar 

  • Ling, G.N. (1972). Hydration of macromolecules. In Home, R.A. (Ed.), Water and Aqueous Solutions. Wiley-Interscience, New York, pp. 663–700

    Google Scholar 

  • Lis, L.J., McAlister, M., Fuller, N., Rand, R.P. and Parsegian, V.A. (1982). Interactions between neutral phospholipid bilayer membranes. Biophys. J., 37, 657–666

    Google Scholar 

  • Lumry, R. and Rajender, S. (1970). Enthalpy-entropy compensation phenomena in water solutions and small molecules: a ubiquitous property of water. Biopolymers, 9, 1125–1227

    Article  Google Scholar 

  • Mahanty, J. and Ninham, B.W. (1976). Dispersion Forces. Academic Press, New York

    Google Scholar 

  • Marcelja, S. (1990). Interactions between interfaces in liquids. In Charvolin, J., Joanny, J.F. and Linn-Justin, J. (Eds), Liquids at Interfaces. North-Holland/Elsevier, Amsterdam, New York, pp. 99–51

    Google Scholar 

  • Marcelja, S. and Radic, N. (1976). Repulsion of interfaces due to boundary water. Chem. Phys. Lett., 42, 129–130

    Article  Google Scholar 

  • Mukkur, T.K.S. (1980). Thermodynamics of hapten-antibody interaction(s). Trends Biochem. Sci., 5, 72–74

    Article  Google Scholar 

  • Mukkur, T.K.S. (1984). Thermodynamics of hapten-antibody interactions. Crit. Rev. Biochem., 16, 133–167

    Article  Google Scholar 

  • Napper, D.H. (1983). Polymeric Stabilization of Colloidal Dispersions. Academic Press, New York

    Google Scholar 

  • Overbeek, J. Th. G. (1952a). Electrochemistry of the double layer. In Kruyt, H.R. (Ed.), Colloid Science, Vol. 1. Elsevier, Amsterdam, pp. 115–193

    Google Scholar 

  • Overbeek, J. Th. G. (1952b). The interaction between colloidal particles. In Kruyt, H.R. (Ed.), Colloid Science, Vol. 1. Elsevier, Amsterdam, pp. 245–277

    Google Scholar 

  • Overbeek, J. Th. G. and Wiersema, P.H. (1967). The interpretation of electrophoretic mobilities. In Bier, M. (Ed.), Electrophoresis, Vol. 2. Academic Press, New York, pp. 1–52

    Chapter  Google Scholar 

  • Parsegian, V.A., Fuller, N. and Rand, R.P. (1979). Measured work of deformation and repulsion of lecithin bilayers. Proc. Natl Acad. Sci. USA, 76, 2750–2754

    Article  Google Scholar 

  • Parsegian, V.A., Rand, R.P., Fuller, N.L. and Rau, D.C. (1986). Osmotic stress for the direct measurement of intermolecular forces. Meth. Enzymol., 127, 400–416

    Article  Google Scholar 

  • Parsegian, V.A., Rand, R.P. and Rau, D.C. (1985). Hydration forces: What next. Chem. Scripta, 25, 28–31

    Google Scholar 

  • Parsegian, V.A., Rand, R.P. and Rau, D.C. (1987). Lessons from the direct measurement of forces between biomolecules. In Satran, S. and Clark, N. (Eds), Proceedings of the Symposium on Complex and Supermolecular Fluids. Wiley, New York, pp. 121–142

    Google Scholar 

  • Pauling, L. and Hayward, R. (1964). The Architecture of Molecules. Freeman, San Francisco, p. 7

    Google Scholar 

  • Prince, L.M. (1967). A theory of aqueous emulsions. I. Negative interfacial tension at the oil/water interface. J. Colloid Interface Sci., 23, 165–173

    Article  Google Scholar 

  • Smeenk, R.J.T., van der Lehy, G. and Aarden, L.A. (1982). Avidity of antibodies to dsDNA, Farr assay and PEG assay. J. Immunol., 128, 73–78

    Google Scholar 

  • Sober, H. (1968). Handbook of Biochemistry. CRC Press, Cleveland, pp. C10, C36

    Google Scholar 

  • Steane, E.A. and Greenwalt, T.J. (1974). Water of hydration and the mechanism of antigen-antibody interaction. Transfusion, 14, 501

    Google Scholar 

  • Steane, E.A. and Greenwalt, T.J. (1977). Red cell agglutination. In Mohn, J.F., Plunkett, R.W., Cunningham, R.K. and Lambert, R.M. (Eds), Human Blood Groups: Proc. 5th Intl. Convoc. Immunol., Buffalo. Karger, Basel, New York, pp. 36–43

    Google Scholar 

  • Sturtevant, J.M. (1977). Heat capacity and entropy changes in processes involving proteins. Proc. Natl Acad. Sci. USA, 74, 2236–2240

    Article  Google Scholar 

  • Vaidhyanathan, V.S. (1982). Inhomogeneous interfacial regions in biological systems. I. Basic differential equations and their implications. J. Biol. Phys., 10, 153–166

    Article  Google Scholar 

  • Vaidhyanathan, V.S. (1985). The electric potential profile in inhomogenous interfacial regions of biological systems. Stud. Biophys., 110, 29–42

    Google Scholar 

  • Vaidhyanathan, V.S. (1986). A fundamental question about the electrical potential profile in the interfacial region of biological membrane systems. In Blank, M. (Ed.), Bioelectrochemistry. Plenum Press, New York, pp. 30–51

    Google Scholar 

  • van der Waals, J.D. (1873). Over de continuiteit van den gas — en vloeistoftoestand. Dissertation, Leiden. (Concerning the Continuity of the Gas and Liquid States)

    Google Scholar 

  • van Oss, C. J. (1985). Stability of human red cell suspensions at 300 000 ×. g. J. Dispersion Sci. Tech., 6, 139–146

    Article  Google Scholar 

  • van Oss, C.J. (1988). Coacervation, complex-coacervation and flocculation. J. Dispersion Sci. Tech., 9, 561–573

    Article  Google Scholar 

  • van Oss, C.J. (1989a). Energetics of cell-cell and cell-biopolymer interactions. Cell Biophys., 14, 1–16

    Article  Google Scholar 

  • van Oss, C.J. (1989b). On the mechanism of the cold ethanol precipitation method of plasma protein fractionation. J. Protein Chem., 8, 661–668

    Article  Google Scholar 

  • van Oss, C.J. (1990a). Surface free energy contribution to cell interactions. In Glaser, R. and Gingell, D. (Eds), Biophysics of the Cell Surface. Springer Verlag, Berlin, New York, pp. 131–152

    Google Scholar 

  • van Oss, C.J. (1990b). Surface properties of fibrinogen and fibrin. J. Protein Chem., 9, 487–491

    Article  Google Scholar 

  • van Oss, C.J. (1990c). Aspecific and specific intermolecular interactions in aqueous media. J. Molec. Recognition, 3, 128–136

    Article  Google Scholar 

  • van Oss, C.J. (1990d). Polar interfacial interactions in RPLC. Israel J. Chem., 30, 251–255

    Article  Google Scholar 

  • van Oss, C.J. (1991a). Interaction forces between biological and other polar entities in water. How many different primary forces are there. J. Dispersion Sci. Tech., 12, 201–219

    Article  Google Scholar 

  • van Oss, C.J. (1991b). The forces involved in bioadhesion to flat surfaces and particles — Their determination and relative roles. Biofouling, 4, 25–35

    Article  Google Scholar 

  • van Oss, C.J. (1993). Interfacial Forces in Aqueous Media. Marcel Dekker, New York (in preparation)

    Google Scholar 

  • van Oss, C.J. and Absolom, D.R. (1984). Nature and thermodynamics of antigen-antibody interactions. In Atassi, M.Z., van Oss, C.J. and Absolom, D.R. (Eds), Molecular Immunology. Marcel Dekker, New York, pp. 337–360

    Google Scholar 

  • van Oss, C.J., Arnold, K., Good, R.J., Gawrisch, K. and Ohki, S. (1990a). Interfacial tension and the osmotic pressure of solutions of polar polymers. J. Macromolec. Sci.-Chem., A27, 563–580

    Google Scholar 

  • van Oss, C.J., Chaudhury, M.K. and Good, R.J. (1987a). Monopolar surfaces. Adv. Colloid Interface Sci., 28, 35–65

    Article  Google Scholar 

  • van Oss, C.J., Chaudhury, M.K. and Good, R.J. (1987b). The mechanism of partition in aqueou. media. Separ. Sci. Technol., 22, 1515–1526

    Article  Google Scholar 

  • van Oss, C.J., Chaudhury, M.K. and Good, R.J. (1988a). Interfacial Lifshitz-van der Waals and polar interactions in macroscopic systems. Chem. Rev., 88, 927–941

    Article  Google Scholar 

  • van Oss, C.J., Chaudhury, M.K. and Good, R.J. (1988b). Polar interfacial interactions, hydration pressure and membrane fusion. In Ohki, S., Doyle, D., Flanagan, T.D., Hui, S.W. and Mayhew, E. (Eds), Membrane Fusion. Plenum Press, New York, pp. 113–122

    Google Scholar 

  • van Oss, C.J., Chaudhury, M.K. and Good, R.J. (1989). The mechanism of phase separation of polymers in organic media — Apolar and polar systems. Separ. Sci. Technol., 24, 15–30

    Article  Google Scholar 

  • van Oss, C.J., Giese, R.F. and Costanzo, P.M. (1990b). DLVO and non-DLVO interactions in hectorite. Clay Clay Minerals, 38, 151–159

    Article  Google Scholar 

  • van Oss, C.J., Giese, R.F., Li, Z., Murphy, K., Chaudhury, M.K. and Good, R.J. (1991). Contact angles and spreading coefficients of liquids on particulate solids, measured by wicking. J. Adhesion Sci. Tech., to be published

    Google Scholar 

  • van Oss, C.J. and Good, R.J. (1984). The ‘equilibrium distance’ between two bodies immersed in a liquid. Colloids and Surfaces, 8, 373–381

    Article  Google Scholar 

  • van Oss, C.J. and Good, R.J. (1988). Orientation of the water molecules of hydration of serum albumin. J. Protein Chem., 7, 179–183

    Article  Google Scholar 

  • van Oss, C.J. and Good, R.J. (1989). Surface tension and the solubility of polymers and biopolymers: The role of polar and apolar interfacial free energies. J. Macromolec. Sci. Chem., A26, 1183–1203

    Google Scholar 

  • van Oss, C.J. and Good, R.J. (1991). Surface enthalpy and entropy and the physico-chemical nature of hydrophobic and hydrophilic interactions. J. Dispersion Sci. Tech., 12, 273–287

    Article  Google Scholar 

  • van Oss, C.J., Good, R.J. and Busscher, H.J. (1990c). Estimation of the polar surface tension parameters of glycerol and formamide, for use in contact angle measurements on polar solids. J. Dispersion Sci. Technol., 11, 75–81

    Article  Google Scholar 

  • van Oss, C.J., Good, R.J. and Chaudhury, M.K. (1986). The role of van der Waals forces and hydrogen bonds in ‘hydrophobic interactions’ between biopolymers and low energy surfaces. J. Colloid Interface Sci., 111, 378–390

    Article  Google Scholar 

  • van Oss, C.J., Omenyi, S.N. and Neumann, A.W. (1979). Negative Hamaker coefficients. II. Phase separation of polymer solutions. Colloid Polymer Sci., 257, 737–744

    Article  Google Scholar 

  • Verwey, E.J.W. and Overbeek, J. Th. G. (1948). Theory of the Stability of Lyophobic Colloids. Elsevier, Amsterdam

    Google Scholar 

  • Visser, J. (1972). On Hamaker constants: A comparison between Hamaker constants and Lifshitz—van der Waals constants. Adv. Colloid Interface Sci., 3, 331–363

    Article  Google Scholar 

  • Washburn, E.W. (1921). The dynamics of capillary flow. Phys. Rev., 18, 273–283

    Article  Google Scholar 

  • Zhou, Z., Wu, P. and Ma, C. (1990). Hydrophobic interaction and stability of colloidal silica. Colloids and Surfaces, 50, 177–188

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Copyright information

© 1993 The contributors

About this chapter

Cite this chapter

van Oss, C.J. (1993). Hydration Forces. In: Westhof, E. (eds) Water and Biological Macromolecules. Topics in Molecular and Structural Biology. Palgrave, London. https://doi.org/10.1007/978-1-349-12359-9_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-349-12359-9_13

  • Publisher Name: Palgrave, London

  • Print ISBN: 978-1-349-12361-2

  • Online ISBN: 978-1-349-12359-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics