Drainage of Cerebrospinal Fluid During Development and in Congenital Hydrocephalus

  • Hazel C. Jones


Cerebrospinal fluid is secreted in the cerebral ventricles by the choroid plexuses. It flows through the ventricular system to the foramina in the fourth ventricle and around the subarachnoid space to the drainage sites. Obstructions within the CSF flow pathway, such as developmental abnormalities, haemorrhage and tumours, can cause hydrocephalus by the accumulation of excess CSF in the ventricles. The classical view of CSF drainage is that it takes place through the arachnoid villi in the wall of the cranial venous sinuses (Weed, 1914), although additional routes exist, such as spinal arachnoid villi (Welch and Pollay, 1963) and lymphatic pathways (Weed, 1914; Bradbury and Cole, 1980).


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bar, T. (1980). The vascular system of the cerebral cortex. Adv. Anat. Embryol. Cell Biol., 59, 1–62CrossRefGoogle Scholar
  2. Bedford, T. H. B. (1942). The effect of variations in the subarachnoid pressure on the venous pressure in the superior longitudinal sinus and in the torcular of the dog. J. Physiol. (London), 101, 362–368CrossRefGoogle Scholar
  3. Berry, M. (1982). The development of the human central nervous system. In Dickerson, J. W. T. and McGurk, H. (Eds), Brain and Behavioural Development. Surrey University PressGoogle Scholar
  4. Blasberg, R. G., Johnson, D. and Fenstermacher, J. D. (1981). Absorption resistance of cerebrospinal fluid after subarachnoid haemorrhage in the monkey: effects of heparin. Neurosurgery, 9, 686–691CrossRefPubMedGoogle Scholar
  5. Bradbury, M. W. B. and Cole, D. F. (1980). The role of the lymphatic system in drainage of cerebrospinal fluid and aqueous humour. J. Physiol. (London), 299, 353–365CrossRefGoogle Scholar
  6. Butler, A. B., Mann, J. D. and Bass, N. H. (1975). Identification of the major site for cerebrospinal fluid efflux in the albino rat. Anat. Rec., 181, 323Google Scholar
  7. Butler, A. B., Mann, J. D., Maffeo, C. J., Dacey, R. G., Johnson, R. N. and Bass, N. H. (1983). Mechanisms of cerebrospinal fluid absorption in normal and pathologically altered arachnoid villi. In Wood, J. H. (Ed.), Neurobiology of the Cerebrospinal Fluid, Vol. II. Plenum Press, New YorkGoogle Scholar
  8. Caley, D. W. and Maxwell, D. S. (1970). Development of the blood vessels and extracellular spaces during postnatal maturation of rat cerebral cortex. J. Comp. Neurol., 138, 31–48CrossRefPubMedGoogle Scholar
  9. Cutler, R. W. P., Page, L., Galicich, T. and Watters, G. V. (1968). Formation and absorption of cerebrospinal fluid in man. Brain, 91, 707–720CrossRefPubMedGoogle Scholar
  10. Davson, H., Hollingsworth, J. and Segal, M. B. (1970). The mechanism of drainage of the cerebrospinal fluid. Brain, 93, 665–678CrossRefPubMedGoogle Scholar
  11. Davson, H., Welch, K. and Segal, M. B. (1987). The Physiology and Pathophysiology of the Cerebrospinal Fluid. Churchill Livingstone, EdinburghGoogle Scholar
  12. Gomez, D. G., Di Benedetto, A. T., Paves, A. M., Firpo, A., Hersham, D. B. and Potts, D. G. (1981). Development of arachnoid villi and granulations in man. Acta Anat., 111, 247–258CrossRefGoogle Scholar
  13. Guthrie, T. G., Dunbar, H. S. and Karpell, B. (1970). Ventricular size and chronic increased intracranial venous pressure in the dog. J. Neurosurg., 33, 407–414CrossRefPubMedGoogle Scholar
  14. Janny, P., Chazal, J., Colnet, G., Irtum, B. and Georget, A.-M. (1981). Benign intracranial hypertension and disorders of CSF absorption. Surg. Neurol., 15, 168–174CrossRefPubMedGoogle Scholar
  15. Johanson, C. E. and Woodbury, D. M. (1974). Changes in CSF flow and extracellular space in the developing rat. In Vernadakis, A. and Weiner, N. (Eds), Drugs and the Developing Brain. Plenum Press, New YorkGoogle Scholar
  16. Jones, H. C. (1985). The cerebrospinal fluid pressure and resistance to absorption during development in normal and hydrocephalic mutant mice. Exp. Neurol., 90, 162–172CrossRefPubMedGoogle Scholar
  17. Jones, H. C. and Bucknall, R. M. (1987). Changes in cerebrospinal fluid pressure and outflow from the lateral ventricles during development of congenital hydrocephalus in the H-Tx rat. Exp. Neurol., 98, 573–583CrossRefPubMedGoogle Scholar
  18. Jones, H. C. and Bucknall, R. M. (1988). Inherited prenatal hydrocephalus in the H-Tx rat: a morphological study. Neuropathol. Appl. Neurobiol., 14, 263–274CrossRefPubMedGoogle Scholar
  19. Jones, H. C., Deane, R. and Bucknall, R. M. (1987). Developmental changes in cerebrospinal fluid pressure and resistance to absorption in rats. Dev. Brain Res., 33, 23–30CrossRefGoogle Scholar
  20. Jones, H. C. and Gratton, J. A. (1989a). The effect of cerebrospinal fluid pressure on dural venous pressure in young rats. J. Neurosurg., 71, 119–123CrossRefPubMedGoogle Scholar
  21. Jones, H. C. and Gratton, J. A. (1989b). The drainage of cerebrospinal fluid in hydrocephalic rats. Z. Kinderchir., 44, Suppl. I, 14–15PubMedGoogle Scholar
  22. Korr, H. (1980). Proliferation of different cell types in the brain. Adv. Anat. Embryol. Cell Biol., 61, 1–70CrossRefPubMedGoogle Scholar
  23. Lorenzo, A. V., Bresnan, M. J. and Barlow, C. F. (1974). Cerebrospinal fluid absorption deficit in normal pressure hydrocephalus. Arch. Neurol., 30, 387–393CrossRefPubMedGoogle Scholar
  24. Lorenzo, A. V., Page, L. K. and Watters, G. V. (1970). Relationship between cerebrospinal fluid formation, absorption and pressure in human hydrocephalus. Brain, 93, 679–692CrossRefPubMedGoogle Scholar
  25. Lorenzo, A. V., Welch, K., Conner, S., Black, P. and Dorval, B. (1981). Changes in the water and electrolyte pattern of the brain and of the intracranial pressure during development in rabbits. Z. Kinderchir., 34, 410–415PubMedGoogle Scholar
  26. Martins, A. N. (1973). Resistance to drainage of cerebrospinal fluid. Clinical measurement and significance. J. Neurol. Neurosurg. Psychiat., 36, 313–318PubMedCentralCrossRefPubMedGoogle Scholar
  27. Martins, A. N., Kobrine, A. I. and Larsen, D. F. (1974). Pressure in the sagittal sinus during intracranial hypertension in man. J. Neurosurg., 40, 603–608CrossRefPubMedGoogle Scholar
  28. Massler, M. and Schour, I. (1951). The growth pattern of the cranial vault in the albino rat as measured by vital staining with alizarin red’ s’. Anat. Rec., 110, 83–101CrossRefPubMedGoogle Scholar
  29. Norrell, H., Wilson, C., Howieson, J., Megison, L. and Bertan, V. (1969). Venous factors in infantile hydrocephalus. J. Neurosurg., 31, 561–569CrossRefPubMedGoogle Scholar
  30. Obenchain, T. G. and Stern, W. E. (1973). Continuous pressure monitoring in experimental hydrocephalus. I. The dynamics of acute ventricular obstruction. Arch. Neurol., 29, 287–294CrossRefPubMedGoogle Scholar
  31. Pysh, J. J. (1970). Mitochondrial changes in rat inferior colliculus during postnatal development: an electron microscopic study. Brain Res., 18, 325–342CrossRefPubMedGoogle Scholar
  32. Sahar, A., Hochwald, G. M. and Ransohoff, J. (1970a). Cerebrospinal fluid and cranial sinus pressures. Relationship in normal and hydrocephalic cats. Arch. Neurol., 23, 413–418CrossRefPubMedGoogle Scholar
  33. Sahar, A., Hochwald, G. M. and Ransohoff, J. (1970b). Passage of cerebrospinal fluid into cranial venous sinuses in normal and experimental hydrocephalic cats. Exp. Neurol., 28, 113–122CrossRefPubMedGoogle Scholar
  34. Shulman, H. and Ransohoff, J. (1965). Sagittal sinus venous pressure in hydrocephalus. J. Neurosurg., 23, 169–173CrossRefPubMedGoogle Scholar
  35. Shulman, K., Yarnell, P. and Ransohoff, J. (1964). Dural sinus pressure in normal and hydrocephalic dogs. Arch. Neurol., 10, 575–580CrossRefPubMedGoogle Scholar
  36. Weed, L. H. (1914). Studies on cerebrospinal fluid. III. The pathways of escape from the subarachnoid spaces with particular reference to the arachnoid villi. J. Med. Res., 31, 51–91PubMedCentralPubMedGoogle Scholar
  37. Weed, L. H. and Flexner, L. B. (1933). The relations of the intracranial pressures. Am. J. Physiol., 105, 266–272Google Scholar
  38. Welch, K. (1975). The principles of physiology of the cerebrospinal fluid in relation to hydrocephalus including normal pressure hydrocephalus. Adv. Neurol., 13, 247–332PubMedGoogle Scholar
  39. Welch, K. and Pollay, M. (1963). The spinal arachnoid villi of the monkeys Cercopithecus aethiops sabaeus and Macaca irus. Anat. Rec., 145, 43–48CrossRefPubMedGoogle Scholar
  40. Wright, R. D. (1938). Experimental observations on increased intracranial pressure. Aust. New Zeal. J. Surg., 7, 215–235CrossRefGoogle Scholar
  41. Yada, K., Nakagawa, Y. and Tsuru, M. (1973). Circulatory disturbances of the venous system during experimental intracranial hypertension. J. Neurosurg., 39, 723–729CrossRefPubMedGoogle Scholar
  42. Young, R. W. (1959). The influence of cranial contents on postnatal growth of the skull in the rat. Am. J. Anat., 105, 383–415CrossRefPubMedGoogle Scholar

Copyright information

© The Editor and Contributors 1992

Authors and Affiliations

  • Hazel C. Jones

There are no affiliations available

Personalised recommendations