Pertussis Toxin-sensitive GTP-binding Proteins in Neuronal Tissues: Recent Insights into Expression and Function

  • Graeme Milligan


Receptors which identify neurotransmitters, hormones and growth factors can be subdivided into three broad classes. These are (1) receptors which allow direct gating of ions; (2) receptors which indirectly control the activity of effector systems which are either ion channels or enzymes which generate intracellular second messengers; and (3) receptors which express tyrosyl kinase activity. This review will focus on the mechanism of action of the second class of receptors, because in every case receptor control of effector function is absolutely dependent upon the intermediate activation of one or more members of a family of highly homologous guanine nucleotide-binding proteins (G-proteins). G-proteins which are implicated in cellular signalling processes are found widely throughout evolution. Highly conserved G-proteins have been identified either via cDNA cloning or immunological means in each of mammals, birds, amphibia, invertebrates, yeast and slime moulds. Preliminary evidence has also been presented to indicate the expression of related proteins in both green plants and bacteria. It should be remembered however that not all proteins which bind and hydrolyse GTP are likely to be involved in cellular signalling processes. For example, factors involved in protein synthesis initiation and elongation require GTP, as do the α- and β-subunits of the microtubule-forming protein, tubulin. Further, a series of low-Mr (21-28 kDa), GTP-utilizing polypeptides have been identified, including members of the ras, ral, rho, ARF and smg families of proteins. A number of these proteins have been implicated in signalling processes, particularly in relation to the control of mitogenesis, but further roles, especially in relation to control of secretory processes, appear likely, particularly when genetic information from yeast systems is taken into consideration.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ali, N., Milligan, G. and Evans, W. H. (1989). Distribution of G-proteins in rat liver plasma-membrane domains and endocytic pathways. Biochem. J., 261, 905–912PubMedPubMedCentralCrossRefGoogle Scholar
  2. Asano, T., Katada, T., Gilman, A. G. and Ross, E. M. (1984). Activation of the inhibitory GTP-binding protein of adenylate cyclase, Gi, by β-adrenergic receptors in reconstituted phospholipid vesicles. J. Biol. Chem., 259, 9351–9354PubMedGoogle Scholar
  3. Banga, H. S., Walker, R. K., Winberry, L. K. and Rittenhouse, S. E. (1987). Pertussis toxin can activate human platelets. Comparative effects of holotoxin and its ADP-ribosylating S1 subunit. J. Biol. Chem., 262, 14871–14874PubMedGoogle Scholar
  4. Brann, M. R., Collins, R. M. and Spiegel, A. (1987). Localization of mRNAs encoding the α subunits of signal-transducing G-proteins within rat brain and among peripheral tissues. FEBS Lett., 222,191–198PubMedCrossRefGoogle Scholar
  5. Buss, J. E., Mumby, S. M., Casey, P. J., Gilman, A. G. and Sefton, B. M. (1987). Myristoylated α subunits of guanine nucleotide binding regulatory proteins. Proc. Natl Acad. Sci. USA, 84, 7493–7497PubMedPubMedCentralCrossRefGoogle Scholar
  6. Cerione, R. A., Kroll, S., Rajaram, R., Unson, C., Goldsmith, P. and Spiegel, A. M. (1988). An antibody directed against the carboxyl terminal decapeptide of the α subunit of the retinal GTP-binding protein, transducin. Effects on transducin function. J. Biol. Chem., 263, 9345–9352PubMedGoogle Scholar
  7. Chang, F. H. and Bourne, H. R. (1987). Dexamethasone increases adenylyl cyclase activity and expression of the α subunit of Gs in GH3 cells. Endocrinology, 121, 1711–1715PubMedCrossRefGoogle Scholar
  8. Codina, J., Olate, J., Abramowitz, J., Mattera, R., Cook, R. G. and Birnbaumer, L. (1988). αi3 cDNA encodes the α subunit of Gk, the stimulatory G-protein of receptor-regulated K+ channels. J. Biol. Chem., 263, 6746–6750PubMedGoogle Scholar
  9. Codina, J., Yatani, A., Grenet, D., Brown, A. M. and Birnbaumer, L. (1987). The a subunit of the GTP binding protein Gk opens atrial potassium channels. Science, 236, 442–445PubMedCrossRefGoogle Scholar
  10. Ewald, D. A., Sternweis, P. C. and Miller, R. J. (1988). Guanine nucleotide-binding protein Go-induced coupling of neuropeptide Y receptors to Ca2+ channels in sensory neurons. Proc. Natl Acad. Sci. USA, 85, 3633–3637PubMedPubMedCentralCrossRefGoogle Scholar
  11. Florio, V. A. and Sternweis, P. C. (1985). Reconstitution of resolved muscarinic cholinergic receptors with purified GTP-binding proteins. J. Biol. Chem., 260, 3477–3483PubMedGoogle Scholar
  12. Gabrion, J., Brabet, Ph., Dao, B. N. T., Hornberger, V., Dumuis, Sebben, M., Rouot, B. and Bockaert, J. (1989). Ultrastructural localization of the GTP-binding protein Go in neurons. Cell Signalling, 1, 107–123PubMedCrossRefGoogle Scholar
  13. Gao, B., Gilman, A. G. and Robishaw, J. D. (1987). A second form of the β-subunit of signal transducing G-proteins. Proc. Natl Acad. Sci. USA, 84, 6122–6125PubMedPubMedCentralCrossRefGoogle Scholar
  14. Gautan, N., Baetscher, M., Aebersold, R. and Simon, M. I. (1989). A G-protein gamma subunit shares homology with ras proteins. Science, 244, 971–974CrossRefGoogle Scholar
  15. Gierschik, P. and Jakobs, K.-H. (1987). Receptor mediated ADP-ribosylation of a phospholipase C-stimulating G-protein. FEBS Lett., 224, 219–223PubMedCrossRefGoogle Scholar
  16. Gierschik, P., Milligan, G., Pines, M., Goldsmith, P., Codina, J., Klee, W. and Spiegel, A. (1986). Use of specific antibodies to quantitate the guanine nucleotide binding protein Go in brain. Proc. Natl Acad. Sci. USA, 83, 2258–2262PubMedPubMedCentralCrossRefGoogle Scholar
  17. Gilman, A. G. (1987). G-proteins: transducers of receptor generated signals. Ann. Rev. Biochem., 56, 615–649PubMedCrossRefGoogle Scholar
  18. Goh, J. W. and Pennefather, P. S. (1989). A pertussis toxin-sensitive G-protein in hippocampal long-term potentiation. Science, 244, 980–983PubMedCrossRefGoogle Scholar
  19. Goldsmith, P., Gierschik, P., Milligan, G., Unson, C. G., Vinitsky, R., Malech, H. L. and Spiegel, A. M. (1987). Antibodies directed against synthetic peptides distinguish between GTP-binding proteins in neutrophil and brain. J. Biol. Chem., 262, 14683–14688PubMedGoogle Scholar
  20. Goldsmith, P., Backlund, P. S. Jr, Rossiter, K., Carter, A., Milligan, G., Unson, C. G. and Spiegel, A. (1988). Purification of heterotrimeric GTP-binding proteins from brain: Identification of a novel form of Go. Biochemistry, 27, 7085–7090PubMedCrossRefGoogle Scholar
  21. Grand, R. J. A. (1989). Acylation of viral and eukaryotic proteins. Biochem. J., 258, 625–638PubMedPubMedCentralCrossRefGoogle Scholar
  22. Hamm, H. E., Deretic, D., Arendt, A., Hargrave, P. A., Koenig, B. and Hofmann, K. P. (1988). Site of G-protein binding to rhodopsin mapped with synthetic peptides to the α subunit. Science, 241, 832–834PubMedCrossRefGoogle Scholar
  23. Hancock, J. F., Marshall, C. J., McKay, I. A., Gardner, S., Houslay, M. D., Hall, A. and Wakelam, M. J. O. (1988). Mutant but not normal p21 ras elevates inositol phospholipid breakdown in two different cell systems. Oncogene, 3, 187–193PubMedGoogle Scholar
  24. Harris-Warrick, R., Hammond, C., Paupardin-Tritsch, D., Hornberger, V., Rouot, B., Bockaert, J. and Gerschenfeld, H. M. (1988). An α40 subunit of a GTP-binding protein immunologically related to Go mediates a dopamine-induced decrease of Ca2+ current in snail neurons. Neuron, 1, 27–32PubMedCrossRefGoogle Scholar
  25. Hescheler, J., Rosenthal, W., Trautwein, W. and Schultz, G. (1987). The GTP-binding protein Go, regulates neuronal calcium channels. Nature (London), 325, 445–447CrossRefGoogle Scholar
  26. Huff, R. M. and Neer, E. J. (1986). Subunit interactions of native and ADP-ribosylated α39 and α41, two guanine nucleotide-binding proteins from bovine cerebral cortex. J. Biol. Chem., 261, 1105–1110PubMedGoogle Scholar
  27. Jones, D. T. and Reed, R. R. (1987). Molecular cloning of five GTP-binding protein cDNA species from rat olfactory neuroepithelium. J. Biol. Chem., 262, 14241–14249PubMedGoogle Scholar
  28. Kurachi, Y., Nakajima, T. and Sugimoto, T. (1986). Role of intracellular Mg2+ in the activation of muscarinic K+ channels in cardiac atrial cell membrane. Pflugers Arch., 407, 572–574PubMedCrossRefGoogle Scholar
  29. McArdle, H., Mullaney, I., Magee, A., Unson, C. and Milligan, G. (1988). GTP analogues cause release of the alpha subunit of the GTP binding protein, Go, from the plasma membrane of NG108-15 cells. Biochem. Biophys. Res. Commun., 152, 243–251PubMedCrossRefGoogle Scholar
  30. McFadzean, I., Mullaney, I., Brown, D. A. and Milligan, G. (1989). Antibodies to the GTP binding protein, Go, antagonize noradrenaline-induced calcium current inhibition in NG108-15 hybrid cells. Neuron, 3, 177–182PubMedCrossRefGoogle Scholar
  31. McKenzie, F. R. and Milligan, G. (1989). The use of specific antisera to locate functional domains of guanine nucleotide binding proteins. In Receptors, Membrane Transport and Signal Transduction. NATO ASI series H: Cell Biology, 29, 65–74 (eds A. E. Evangelopoulos, J. P. Changeux, L. Packer, T. G. Sotiroudis and K. W. A. Wirtz), Springer, BerlinGoogle Scholar
  32. Masters, S. B., Stroud, R. M. and Bourne, H. R. (1986). Family of G-protein α chains: amphipathic analysis and predicted structure of functional domains. Protein Engineering, 1, 47–54PubMedCrossRefGoogle Scholar
  33. Masters, S. B., Sullivan, K. A., Miller, R. T., Beiderman, B., Lopez, N. G., Ramachandran, J. and Bourne, H. R. (1988). Carboxyl terminal domain of Gsα specifies coupling of receptors to stimulation of adenylyl cyclase. Science, 241, 448–451PubMedCrossRefGoogle Scholar
  34. Milligan, G. (1988). Techniques used in the identification and analysis of function of pertussis toxin-sensitive guanine nucleotide binding proteins. Biochem. J., 255, 1–13PubMedPubMedCentralCrossRefGoogle Scholar
  35. Milligan, G. (1989). Foetal calf serum enhances cholera toxin-catalysed ADP-ribosylation of the pertussis toxin-sensitive guanine nucleotide binding protein, Gi2, in rat glioma C6BU1 cells. Cell. Signalling, 1, 65–74PubMedCrossRefGoogle Scholar
  36. Milligan, G. and Klee, W. A. (1985). The inhibitory guanine nucleotide binding protein (Ni) purified from bovine brain is a high affinity GTPase. J. Biol. Chem., 260, 2057–2063PubMedGoogle Scholar
  37. Milligan, G. and McKenzie, F. R. (1988). Opioid peptides promote cholera toxin-catalysed ADP-ribosylation of the inhibitory guanine nucleotide binding protein (Gi) in membranes of neuroblastoma×glioma hybrid cells. Biochem. J., 252, 369–373PubMedPubMedCentralCrossRefGoogle Scholar
  38. Milligan, G., Gierschik, P., Spiegel, A. M. and Klee, W. A. (1986). The GTP binding regulatory proteins of neuroblastoma×glioma, NG108-15, and glioma, C6, cells. Immunochemical evidence of a pertussis toxin substrate that is neither Ni nor No. FEBS Lett., 195, 225–230PubMedCrossRefGoogle Scholar
  39. Milligan, G., Streaty, R. A., Gierschik, P., Spiegel, A. M. and Klee, W. A. (1987a). Development of opiate receptors and GTP-binding regulatory proteins in neonatal rat brain. J. Biol. Chem., 262, 8626–8630PubMedGoogle Scholar
  40. Milligan, G., Gierschik, P., Unson, C. G. and Spiegel, A. M. (1987b). The use of specific antisera to study the developmental regulation of guanine nucleotide binding proteins. Protides of the Biological Fluids, 35, 415–418CrossRefGoogle Scholar
  41. Milligan, G., Mitchell, F. M., Mullaney, I., McClue, S. J. and McKenzie, F. R. (1990). The role and specificity of guanine nucleotide binding proteins in receptor-effector coupling. In Hormone Perception and Signal Transduction in Animals and Plants (eds J. Roberts, M. Venis and C. Kirk), Society of Biologists, London (in press)Google Scholar
  42. Mitchell, F. M., Griffiths, S. L., Saggerson, E. D., Houslay, M. D., Knowler, J. T. and Milligan, G. (1989). Guanine nucleotide binding proteins expressed in rat white adipose tissue. Identification of both mRNAs and proteins corresponding to Gi1, Gi2 and Gi3. Biochem. J., 262, 403–408PubMedPubMedCentralCrossRefGoogle Scholar
  43. Mullaney, I. and Milligan, G. (1989). Elevated levels of the guanine nucleotide binding protein, Go, are associated with differentiation of neuroblastoma×glioma hybrid cells. FEBS Lett., 244, 113–118PubMedCrossRefGoogle Scholar
  44. Neer, E. J. and Clapham, D. E. (1988). Roles of G protein subunits in transmembrane signalling. Nature (London), 333, 129–134CrossRefGoogle Scholar
  45. Nicoll, R. A. (1988). The coupling of neurotransmitter receptors to ion channels in the brain. Science, 241, 545–551PubMedCrossRefGoogle Scholar
  46. Ohta, H., Okajima, F. and Ui, M. (1985). Inhibition by islet-activating protein of a chemotactic peptide-induced early breakdown of inositol phospholipids and Ca2+ mobilization in guinea pig neutrophils. J. Biol. Chem., 260, 15771–15780PubMedGoogle Scholar
  47. Pines, M., Gierschik, P., Milligan, G., Klee, W. and Spiegel, A. (1985). Antibodies against the carboxyl-terminal 5-kDa peptide of the α subunit of transducin crossreact with the 40-kDa but not the 39-kDa guanine nucleotide binding protein from brain. Proc. Natl Acad. Sci. USA, 82, 4095–4099PubMedPubMedCentralCrossRefGoogle Scholar
  48. Quan, F., Wolfgang, W. J. and Forte, M. A. (1989). The Drosophila gene coding for the α subunit of a stimulatory G-protein is preferentially expressed in the nervous system. Proc. Natl Acad. Sci. USA, 86, 4321–4325PubMedPubMedCentralCrossRefGoogle Scholar
  49. Rosenthal, W., Hescheler, J., Trautwein, W. and Schultz, G. (1988). Control of voltage-dependent Ca2+ channels by G-protein-coupled receptors. FASEB J 2, 2784–2790PubMedGoogle Scholar
  50. Saito, N., Guitart, X., Hayward, M., Tallman, J. F., Duman, R. S. and Nestler, E. J. (1989). Corticosterone differentially regulates the expression of Gsα and Giα messenger RNA and protein in rat cerebral cortex. Proc. Natl Acad. Sci. USA, 86, 3906–3910PubMedPubMedCentralCrossRefGoogle Scholar
  51. Sasaki, K. and Sato, M. (1987). A single GTP-binding protein regulates K+-channels coupled with dopamine, histamine and acetylcholine receptors. Nature (London), 325, 259–262CrossRefGoogle Scholar
  52. Sternweis, P. C. and Robishaw, J. D. (1984). Isolation of two proteins with high affinity for guanine nucleotides from membranes of bovine brain. J. Biol. Chem., 259, 13806–13813PubMedGoogle Scholar
  53. Sullivan, K. A., Miller, R. T., Masters, S. B., Beiderman, B., Heideman, W. and Bourne, H. R. (1987). Identification of receptor contact site involved in receptor-G-protein coupling. Nature (London), 330, 758–759CrossRefGoogle Scholar
  54. Thalmann, R. H. (1988). Evidence that guanosine triphosphate (GTP) binding proteins control a synaptic response in brain. Effect of pertussis toxin and GTP7S on the late inhibitory postsynaptic potential of hippocampal CA3 neurons. J. Neuroscience, 8, 4589–4602PubMedGoogle Scholar
  55. Ueda, H., Yoshihara, Y., Misawa, H., Fukushima, N., Katada, T., Ui, M., Takagi, H. and Satoh, M. (1989). The kyotorphin (tyrosine-arginine) receptor and a selective reconstitution with purified Gi, measured with GTPase and phospholipase C assays. J. Biol. Chem., 264, 3732–3741PubMedGoogle Scholar
  56. VanDongen, A. J. M., Codina, J., Olate, J., Mattera, R., Joho, R., Birnbaumer, L. and Brown, A. M. (1988). Newly identified brain potassium channels gated by the guanine nucleotide binding protein Go. Science, 242, 1433–1436CrossRefGoogle Scholar
  57. Weinstein, L. S., Spiegel, A. M. and Carter, A. D. (1988). Cloning and characterization of the human gene for the α subunit of Gi2, a GTP-binding signal transduction protein. FEBS Lett., 232, 333–340PubMedCrossRefGoogle Scholar
  58. Worley, P. F., Baraban, J. M., Van Dop, C., Neer, E. J. and Snyder, S. H. (1986). Go, aguanine nucleotide-binding protein: immunohistochemical localization in rat brain resembles distribution of second messenger systems. Proc. Natl Acad. Sci. USA, 83, 4561–4565PubMedPubMedCentralCrossRefGoogle Scholar
  59. Yatani, A., Mattera, R., Codina, J., Graf, R., Okabe, K., Padrell, E., Iyengar, R., Brown, A. M. and Birnbaumer, L. (1988). The G-protein-gated atrial K+ channel is stimulated by three distinct Giα subunits. Nature (London), 336, 680–682CrossRefGoogle Scholar

Copyright information

© Macmillan Publishers Limited 1990

Authors and Affiliations

  • Graeme Milligan
    • 1
  1. 1.Molecular Pharmacology Group, Departments of Biochemistry and PharmacologyUniversity of GlasgowGlasgowUK

Personalised recommendations