Evaluation of Candidate Anti-HIV Agents in vitro

  • Victoria A. Johnson

Abstract

Significant progress has been made in the development of anti-HIV therapies for patients with AIDS and other HIV-related illnesses [1-4]. Because of major advances in our understanding of the HIV-1 replicative cycle and identification of potential targets for anti-retroviral therapy, many newer agents are now undergoing preclinical and clinical drug development [1-4]. Of particular interest are compounds with novel mechanisms of anti-HIV action and/or improved therapeutic indices when compared to drugs currently available. Ideally, these agents should have high potency, low toxicity, activity in multiple cell types (e.g., CD4-positive lymphocytes and monocyte/macrophages), penetration into target sites (e.g., the central nervous system), stability in body fluids, easy administration, and low production cost. Several promising compounds that attack different sites in the HIV-1 replicative cycle are undergoing clinical evaluation currently (Figure 13–1).

Keywords

Toxicity Interferon Pyrimidine Deoxythymidine Alkalinity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Yarchoan, R., Mitsuya, H., and Broder, S. 1989. Clinical and basic advances in the antiretroviral therapy of human immunodeficiency virus infection. Am J Med 87:191–200.PubMedCrossRefGoogle Scholar
  2. 2.
    Sandstrom E. 1989. Antiviral therapy in human immunodeficiency virus infection. Drugs 38:417–450.PubMedCrossRefGoogle Scholar
  3. 3.
    Hirsch, M. S. 1990. Chemotherapy of human immunodeficiency virus infections: Current practice and future prospects. J Infect Dis 161:845–857.PubMedCrossRefGoogle Scholar
  4. 4.
    Johnson, V. A., and Hirsch, M. S. 1990. New developments in antiretroviral infections. In AIDS Clinical Review 1990, P. Volberding, and M. A. Jacobson, eds. Marcel Dekker, Inc., New York, pp. 235–272.Google Scholar
  5. 5.
    Larder, B. A., Darby, G., and Richman, D. D. 1989. HIV with reduced sensitivity to zidovudine (AZT) isolated during prolonged therapy. Science 243:1731–1734.PubMedCrossRefGoogle Scholar
  6. 6.
    Richman, D. D., Fischl, M. A., Grieco, M. H., Gottlieb, M. S., Volberding, P. A., Laskin, O. L., Leedom, J. M., Groopman, J. E., Mildvan, D., Hirsch, M. S., Jackson, G. G., Durack, D. T., Nusinoff-Lehrman, S., and the AZT Collaborative Working Group. 1987. The toxicity of azidothymidine (AZT) in the treatment of patients with AIDS and AIDS-related complex. A double-blind, placebo-controlled trial. N Engl J Med 317:192–197.PubMedCrossRefGoogle Scholar
  7. 7.
    Merigan, T. C., Skowron, G., Bozzette, S. A., Richman, D., Uttamchandani, R., Fischl, M., Schooley, R., Hirsch, M., Soo, W., Pettinelli, C., Schaumburg, H., and the ddC Study Group of the AIDS Clinical Trials Group. 1989. Circulating p24 antigen levels and responses to dideoxycytidine in human immunodeficiency virus (HIV) infections. A phage I and II study. Ann Intern Med 110:189–194.PubMedCrossRefGoogle Scholar
  8. 8.
    Ho, D. D., Hartshorn, K. L., Rota, T. R., Andrews, C. A., Kaplan, J. C., Schooley, R. T., and Hirsch, M. S. 1985. Recombinant human interferon alfa-A suppresses HTLV-III replication in vitro. Lancet 1:602–604.PubMedCrossRefGoogle Scholar
  9. 9.
    Sandstrom, E. G., Kaplan, J. C., Byington, R. E., and Hirsch, M. S. 1985. Inhibition of human T-cell lymphotropic virus type III in vitro by phosphonoformate. Lancet 1:1480–1482.PubMedCrossRefGoogle Scholar
  10. 10.
    Hartshorn, K. L., Sandstrom, E. G., Neumeyer, D., Paradis, T. J., Chou, T.-C., Schooley, R. T., and Hirsch, M. S. 1986. Synergistic inhibition of human T-cell lymphotropic virus type III replication in vitro by phosphonoformate and recombinant alpha-A interferon. Antimicrob Agents Chemother 30:189–191.PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Hartshorn, K. L., Vogt, M. W., Chou, T.-C., Blumberg, R. S., Byington, R., Schooley, R. T., and Hirsch, M. S. 1987. Synergistic inhibition of human immunodeficiency virus in vitro by azidothymidine and recombinant alpha A interferon. Antimicrob Agents Chemother 31:168–172.PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Vogt, M. W., Hartshorn, K. L., Furman, P. A., Chou, T.-C., Fyfe, J. A., Coleman, L. A., Crumpacker, C., Schooley, R. T., and Hirsch, M. S. 1987. Ribavirin antagonizes the effect of azidothymidine on HIV replication. Science 235:1376–1379.PubMedCrossRefGoogle Scholar
  13. 13.
    Vogt, M. W., Durno, A. G., Chou, T.-C., Coleman, L. A., Paradis, T. J., Schooley, R. T., Kaplan, J. C., and Hirsch, M. S. 1988. Synergistic interaction of 2′, 3′-dideoxycytidine and recombinant interferon-α-A on replication of human immunodeficiency virus type 1. J Infect Dis 158:378–385.PubMedCrossRefGoogle Scholar
  14. 14.
    Johnson, V. A., Walker, B. D., Barlow, M. A., Paradis, T. J., Chou, T.-C., and Hirsch, M. S. 1989. Synergistic inhibition of human immunodeficiency virus type 1 and type 2 replication in vitro by castanospermine and 3′-azido-3′-deoxythymidine. Antimicrob Agents Chemother 33:53–57.PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Johnson, V. A., Barlow, M. A., Chou, T.-C., Fisher, R. A., Walker, B. D., Hirsch, M. S., and Schooley, R. T. 1989. Synergistic inhibition of human immunodeficiency virus type 1 (HIV-1) replication in vitro by recombinant soluble CD4 and 3′-azido-3′-deoxythymidine. J Infect Dis 159:837–844.PubMedCrossRefGoogle Scholar
  16. 16.
    Johnson, V. A., Barlow, M. A., Merrill, D. P., Chou, T.-C., and Hirsch, M. S. 1990. Three drug synergistic inhibition of HIV-1 replication in vitro by zidovudine, recombinant soluble CD4, and recombinant interferon-alpha A. J Infect Dis 161:1059–1067.PubMedCrossRefGoogle Scholar
  17. 17.
    Evans, L. A., McHugh, T. M., Stites, D. P., and Levy, J. A. 1987. Differential ability of human immunodeficiency virus isolates to productively infect human cells. J Immunol 138:3415–3418.PubMedGoogle Scholar
  18. 18.
    Wainberg, M. A., Blain, N., and Fitz-Gibbon, L. 1987. Differential susceptibility of human lymphocyte cultures to infection by HIV. Clin Exp Immunol 70:136–142.PubMedPubMedCentralGoogle Scholar
  19. 19.
    Moellering, R. C. 1990. Principles of anti-infective therapy. In Principles and Practice of Infectious Diseases, Third Edition, G. L. Mandell, R. G. Douglas, and J. E. Bennett, eds. Churchill Livingstone, Inc., New York, pp. 212–213.Google Scholar
  20. 20.
    Chou, T.-C., and Talalay, P. 1984. Quantitative analysis of dose-effect relationships: The combined effects of multiple drugs or enzyme inhibitors. Adv Enzyme Regul 22:27–55.PubMedCrossRefGoogle Scholar
  21. 21.
    Chou, T.-C., and Talalay, P. 1987. Applications of the median-effect principle for the assessment of low-dose risk of carcinogens and for the quantitation of synergism and antagonism of chemotherapeutic agents. In New Avenues in Developmental Cancer Chemotherapy. Bristol-Myers Cancer Symposia Series. K. R. Harrap, and T. A. Connors, eds. Academic Press, Orlando, FL, pp. 37–64.Google Scholar
  22. 22.
    Chou, J., and Chou, T.-C. 1987. Dose-effect analysis with microcomputers: Quantitation of ED50, LD50, synergism, antagonism, low-dose risk, receptor-ligand binding and enzyme kinetics. In A Computer Soßware for IBM-PC and Manual. Elsevier-Biosoft, Cambridge, UK.Google Scholar
  23. 23.
    Suhnel, J. 1990. Evaluation of synergism or antagonism for the combined action of antiviral agents. Antiviral Research 13:23–40.PubMedCrossRefGoogle Scholar
  24. 24.
    Hammer, S. M., and Gillis, J. M. 1987. Synergistic activity of granulocyte-macrophage colony-stimulating factor and 3′-azido-3′-deoxythymidine against human immunodeficiency virus in vitro. Antimicrob Agents Chemother 31:1046–1050.PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Baba, M., Pauwels, R., Balzarini, J., Herdewijn, P., De Clercq, E., and Desmyter, J. 1987. Ribavarin antagonizes inhibitory effects of pyrimidine 2′, 3′-dideoxynucleosides but enhances inhibitory effects of purine 2′, 3′-dideoxynucleosides on replication of human immunodeficiency virus in vitro. Antimicrob Agents Chemother 31:1613–1617.PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Perno, C.-F., Yarchoan, R., Cooney, D. A., Hartman, N. R., Webb, D. S. A., Hao, Z., Mitsuya, H., Johns, D. G., and Broder, S. 1989. Replication of human immunodeficiency virus in monocytes. Granulocyte/macrophage colony-stimulating factor (GM-CSF) potentiates viral production yet enhances the antiviral effect mediated by 3′-azido-2′ 3′-dideoxythymidine (AZT) and other dideoxynucleoside congeners of thymidine. J Exp Med 169:933–951.PubMedCrossRefGoogle Scholar
  27. 27.
    Berman, E., Duigou-Osterndorf, R., Krown, S. E., Fanucchi, M. P., Chou, J., Hirsch, M. S., Clarkson, B. D., and Chou, T.-C. 1989. Synergistic cytotoxic effect of azidothymidine and recombinant interferon alpha on normal human bone marrow progenitor cells. Blood 74:1281–1286.PubMedGoogle Scholar
  28. 28.
    Eriksson, B. F. H., and Schinazi, R. F. 1989. Combinations of 3′-azido-3′-deoxythymidine (zidovudine) and phosphonoformate (foscarnet) against human immunodeficiency virus type 1 and cytomegalovirus replication in vitro. Antimicrob Agents Chemother 33:663–669.PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Szebeni, J., Wahl, S. M., Popovic, M., Wahl, L. M., Gartner, S., Fine, R. L., Skaleric, U., Friedmann, R. M., and Weinstein, J. N. 1989. Dipyridamole potentiates the inhibition by 3′-azido-3′-deoxythymidine and other dideoxynucleosides of human immunodeficiency virus replication in monocyte-macrophages. Proc Natl Acad Sci USA 86:3842–3846.PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Smith, M. S., Brian, E. L., De Clercq, E., and Pagano, J. S. 1989. Susceptibility of human immunodeficiency virus type 1 replication in vitro to acyclic adenosine analogs and synergy of the analogs with 3′-azido-3′-deoxythymidine. Antimicro Agents Chemother 33:1482–1486.CrossRefGoogle Scholar
  31. 31.
    Hayashi, S., Fine, R. L., Chou, T.-C., Currens, M. J., Broder, S., and Mitsuya, H. 1990. In vitro inhibition of the infectivity and replication of human immunodeficiency virus type 1 by combination of antiretroviral 2′, 3′-dideoxynucleosides and virus-binding inhibitors. Antimicrob Agents Chemother 34:82–38.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Stockton Press 1990

Authors and Affiliations

  • Victoria A. Johnson
    • 1
  1. 1.Infectious Disease UnitMassachusetts General Hospital and Harvard Medical SchoolBostonUSA

Personalised recommendations