Experimental Models in the Study of the Pathology of the Blood-Brain Barrier

  • Hugh Davson
  • Berislav Zloković
  • Ljubisa Rakić
  • Malcolm B. Segal


Transport across the blood-brain barrier has a protective and regulatory role, and in this chapter we shall consider some behavioural dysfunctions that may be related to a disturbance of the barrier. The prerequisite for studies on barrier dysfunction is the establishment of suitable experimental animal models. Many, but far from all, models in experimental medicine are homologous, i.e. there is a correspondence in the aetiology of the disease and the model. Other models, on the other hand, may be described as only isomorphic, so that, despite a parallelism between the model and the human condition, the cause of the condition in the model may be quite different from that in man. Finally, the model may have no resemblance to the disease but simply be a non-homologous or non-isomorphic representation that has value in either reflecting some aspects of the disease or for studying the therapy used for treating the disease.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Allen, I.V. (1986). The relationship of immunological and histological abnormalities in multiple sclerosis. In Hommes, O.R. (Ed.), Multiple Sclerosis Research in Europe. MTP Press, Lancaster, pp. 163–167CrossRefGoogle Scholar
  2. Anqrist, B.M. and Gerson, S. (1970). The phenomenology of experimentally induced amphetamine psychosis-preliminary observations. Biol. Psychiat., 2, 95–107Google Scholar
  3. Arežina, P., Atanasova, E., Djordjević, Z., Lević, Z., Mileusnić, R., Pavlović, V., Ocić, G., Rakić, Lj. and Sekulović, N. (1990). Biological Markers in evaluation of patient outcome after brain injury. Bull. Sci.(in press)Google Scholar
  4. Bakay, R.A.E., Sweeney, K.M. and Wood, J.H. (1986). Pathophysiology of cerebrospinal fluid in head injury. Part 2—Biochemical markers for central nervous system trauma. Neurosurgery, 18, No. 3, 376–382CrossRefGoogle Scholar
  5. Boyeson, M.G. and Feeney, D.M. (1985). Striate dopamine after cortical injury. Exp. Neurol., 89, 479–483CrossRefGoogle Scholar
  6. Carlsson, C. and Johansson, B.B. (1978). Blood-brain barrier disfunction after ampheta-mine-administration in rats. Acta Neuropathol., 41, 125–129CrossRefGoogle Scholar
  7. Colover, J. (1980). A new pattern of spinal-cord demyelination in guinea pigs with acute experimental allergic encephalomyelitis mimicking multiple sclerosis. Br. J. Exp. Pathol, 61. 390–400Google Scholar
  8. Colover, J. (1984). Acute demyelination in EAE after pretreatment with foreign protein and muramyl dipeptide (MDP). In Liss, A.R. (Ed.), Experimental Allergic Encephalomyelitis: A Useful Model for Multiple Sclerosis. pp. 37–42Google Scholar
  9. Colover, J. (1988). Myelin debris in demyelinating process: A disease activity marker. In Confavreux, C., Aimard, G. and Dević, M. (Eds), Trends in European Multiple Sclerosis Research. Elsevier, London, pp. 229–234Google Scholar
  10. Crone, C. (1986). Modulation of solute permeability in microvascular endothelium. Fed. Proc., 45, 77–83Google Scholar
  11. Daniel, P.M., Lam, D.K. and Pratt, O.E. (1981). Changes in the effectiveness of the blood-brain and blood-spinal cord barriers in experimental allergic encephalomyelitis. J. Neurol. Sci., 52, 211–219CrossRefGoogle Scholar
  12. Daniel, P.M., Lam, D.K. and Pratt, O.E. (1983). Relation between the increase in the diffusional permeability allergic encephalomyelitis in the Lewis rat. J. Neurol. Sci., 60, 367–376CrossRefGoogle Scholar
  13. Davson, H. and Danielli, J.F. (1942). The Permeability of Natural Membranes. Cambridge University Press, CambridgeGoogle Scholar
  14. Davson, H., Welch, K. and Segal, M.B. (1987). Physiology and Pathophysiology of Cerebro-spinal Fluid.Churchill Livingstone. Edinburgh. pp. 458–530Google Scholar
  15. Dida, B., Rosić, N. and Rakić, Lj. (1982). The effects of long-term amphetamine administration on serum-proteins in rat. IRCS Med. Sci. Biochem., 10, 291–292Google Scholar
  16. Domer, F.R., Sankar, R., Cole, S. and Wellmeyer, D. (1980). Dose dependent ampheta-mine-induced changes in permeability of blood-brain barrier of normotensive and spontaneously hypertensive rats. Exp. Neurol., 70, 576–585CrossRefGoogle Scholar
  17. Feeney, D.M., Gonzales, A. and Law, W. (1982). Amphetamine, holoperidine and experience interact to affect rate of recovery after motor cortex injury. Science, 271, 855–857CrossRefGoogle Scholar
  18. Felgenhauer, K. (1974). Protein size and cerebrospinal fluid. Klin. Wschr., 52, 1158–1164CrossRefGoogle Scholar
  19. Felgenhauer, K. (1980). Protein filtration and secretion at human body fluid barriers. Pflüg. Arch., 384, 9–17CrossRefGoogle Scholar
  20. Gerstenbrand, F. and Poewe, W.(1986). Dopamine-peptidergic interactions in extrapyra-midal disorders: a review of the clinical evidence. In Yahr, M.D. and Bergman, K.J. (Eds), Advances in Neurology, Vol. 45. Raven Press, New York, pp. 67–73Google Scholar
  21. Hunter, W.M. and Greenwood, F.C. (1962). Preparation of iodine 131 labelled human growth hormone of high specific activity. Nature, 194, 495–498CrossRefGoogle Scholar
  22. Joó, F. (1986). New aspects to the function of the cerebral endothelium. Nature, 321, 197–198CrossRefGoogle Scholar
  23. Joó, F. (1988). Cyclic nucleotide mediated regulation of albumin transport in brain microvessels. In Rakić, Lj., Begley, D.J., Davson, H. and Zloković, B.V. (Eds), Peptide andAminoAcidTransportMechanism in the Central Nervous System. Macmillan, London, pp. 119–129Google Scholar
  24. Kornetsky, C. (1977). Animal models: promises and problems. I. Hanin, I. and Usdin, E. (Eds). Animal Models in Psychiatry and Neurology. Pergamon Press, Oxford. pp. 1–9Google Scholar
  25. Lampert, P.W. (1978). Autoimmune and virus-induced demyelinating diseases. Am. J. Pathol., 91, 176–197Google Scholar
  26. Lassman, H. and Vass, K. (1986). The spectrum of experimental allergic encephalomyeli-tis. In Hommes, O.R. (Ed.), Multiple Sclerosis Research in Europe. MTP Press, Lancaster, pp. 109–115CrossRefGoogle Scholar
  27. McCulloch, J. and Harper, M.A. (1977). Cerebral circulatory and metabolism changes following amphetamine administration. Brain Res., 121, 196–199CrossRefGoogle Scholar
  28. Matthyse, A. and Hober, S.(1975). Animal models of schizophrenia. In Ongle, D.J. and Shein, H.M.(Eds), Model Systems in Biological Psychiatry. MIT Press, Cambridge, Mass., pp. 4–18Google Scholar
  29. Orlowski, M., Sessa, G. and Green, J.P. (1974). γ-Glutamyl transpeptidase in brain capillaries: possible site of a blood-brain barrier for amino acids. Science, 184, 66CrossRefGoogle Scholar
  30. Pardridge, W.M. (1988). Recent advances in blood-brain barrier transport. Ann. Rev. Pharmacol. Toxicol., 28, 25–39CrossRefGoogle Scholar
  31. Pardridge, W.M. and Mieius, L.J. (1981). Enkephalins and the blood-brain barrier: studies of binding and degradation in isolated brain microvessels. Endocrinology, 109, 1138–1145CrossRefGoogle Scholar
  32. Pearlson, G.D. and Robinson, R.G. (1981). Suction lesions of the cerebral cortex in the rat induce asymmetrical behavioral and catecholaminergic responses. Brain Res., 218, 233–242CrossRefGoogle Scholar
  33. Peković, S., Rusić, M., Veskov, R. and Rakić, Lj. (1988). Suction ablation of the sensory-motor cortex induce assymmetrical changes in Ca2+uptake in rat brain region synaptosomes. Adv. Biosci., 70, 133–136Google Scholar
  34. Provje, A.J., Gazzbutt, J., Loosen, P.T., Bissette, G. and Nemeroj, K. (1987). The role of peptides in affective disorders: a review. Prog. Brain Res., 72, 235–279CrossRefGoogle Scholar
  35. Rakić, Lj. (1984). Systems regulating behaviour. Mir, MoscowGoogle Scholar
  36. Rakić, Lj. (1988). Experimental models of restoration of functions of the brain lesions. In Cohadon, F. and Loboantunes, J. (Eds), Fidia Research Series, Vol. 13. Liviana Press, PadovaGoogle Scholar
  37. Rakić, Lj., Zloković, B.V., Davson, H., Begley, D.J., Lipovac, M.N. and Mitrović, D.M. (1989). Chronic amphetamine intoxication and the blood-brain barrier permeability to inert polar molecules in the vascularly perfused guinea-pig brain. J. Neurol. Sci., 91, 41–50Google Scholar
  38. Reiber, H. (1986). Evaluation of blood-cerebrospinal fluid barrier dysfunction in neuro-logical diseases. In Suckling, A J., Rumsby, M.G. and Bradbury, M.W.B. (Eds). Ellis Horwood, Chichester, pp. 132–147Google Scholar
  39. Rozenzweig, M.R. and Porter, L.W. (1984). Brain function: neural adaptation and recovery from brain injury. Ann Rev. Psvchol., 35, 2377–2388Google Scholar
  40. Rusic, M., Pekovic, S., Veskov, R. and Rakic, Lj. (1988). The effects of cortical injury on Na+,K+-ATPase activity. Ada. Biosci., 70, 173–176Google Scholar
  41. Seeman, P. (1980). Brain dopamine receptors. Pharmacol. Rev., 32(3), 229–313Google Scholar
  42. Sheehy, M., Schachter, M., Mardsen, C.D. and Parkers, J.D. (1981). Enkephalins in motor disorders. In Rose, F.C. and Capildeo, R. (Eds), Research Progress in Parkinson ’s Disease. Pitman Medical, London, D. 165Google Scholar
  43. Snyder, S.H. (1976). The dopamine hypothesis of schizophrenia: focus on the dopamine receptors. Am. 1 Psychiat., 133, 197–204CrossRefGoogle Scholar
  44. Takasato, Y., Rapoport, S.I. and Smith, QR. (1984). An in situbrain perfusion technique to study cerebrovascular transnort in rat. Am. J. Physiol., 274. H484–H493Google Scholar
  45. Zloković, B.V., Begley, D J., Djuriçić, B.M. and Mitrović, D.M. (1986a). Measurement of solute transport across the blood-brain barrier in the perfused guinea-pig brain: method and application to N-methyl-a-aminoisobutyric acid. J. Neurochem., 46, 1444–1451CrossRefGoogle Scholar
  46. Zloković, B.V., Begley, D J., Segal, M.B., Davson, H., Rakić, Lj., Lipovac, M.N., Mitrović, D.M. and Jankov, R.M. (1988). Neuropeptide transport mechanisms in the central nervous system. In Rakic, Lj., Begley, D J., Davson, H. and Zlokovi&#x0107, B.V. (Eds), Peptide andAmino Acid Transport Mechanisms in the Central Neroous System.Macmillan, London, pp. 3–21Google Scholar
  47. Zloković, B.V., Lipovac, M.N., Begley, D J., Davson, H. and Rakic, Lj. (1987). Transport of leucine-enkephalin across the blood-brain barrier in the perfused guinea-pig brain. J. Neurochem., 49, 310–315CrossRefGoogle Scholar
  48. Zloković, B.V., Lipovac, M.N., Begley, D J., Davson, H. and Rakic, Lj. (1988). Slow penetration of thyrotropin-releasing hormone across the blood-brain barrier of in situnerfused guinea-pig brain. J. Neurochem.(in press)Google Scholar
  49. Zloković, B.V., Segal, M.B. and Begley, D.J. (1986b). Permeability of the isolated choroid plexus of the sheep to thyrotropin-releasing hormone. In Yudilevich, D.L. and Mann, G.E. (Eds), Carrier-mediated Transport of Solutes from Blood to Tissue. Longman, London, pp. 307–312Google Scholar
  50. Zloković, B.V., Segal, M.B., Begley, D J., Davson, H. and Rakic, L. (1985). Permeability of the blood-cerebrospinal fluid and blood-brain barrier to thyrotropin releasing hormone. Brain Res., 358, 191–199CrossRefGoogle Scholar
  51. Zloković, B.V., Segal, M.B., Davson, H. and Mitrović, D.M. (1988). Unidirectional uptake of enkephalins at the blood-tissue interface of blood-cerebrospinal fluid barrier: a saturable mechanism. Regul. Peptides, 20, 33–45CrossRefGoogle Scholar

Copyright information

© The authors 1993

Authors and Affiliations

  • Hugh Davson
    • 1
  • Berislav Zloković
    • 2
  • Ljubisa Rakić
    • 3
  • Malcolm B. Segal
    • 1
  1. 1.Sherrington School of Physiology UMDSGuy’s and St Thomas’s HospitalsLondonUK
  2. 2.USC School of MedicineLos AngelesUSA
  3. 3.School of MedicineBelgradeSerbia

Personalised recommendations