Transport of Some Precursors of Nucleotides and Some Vitamins

  • Hugh Davson
  • Berislav Zloković
  • Ljubisa Rakić
  • Malcolm B. Segal
Chapter

Abstract

The transport of nucleotide precursors, such as the purine and pyrimidine bases and their sugar derivatives, the nucleosides, within the central nervous system is of some interest, since nucleic acid synthesis, although limited in extent within the central nervous system, certainly takes place; and at least some precursors must be derived from the blood (Spector and Eells, 1984). The matter is of clinical interest because the Lesch-Nyhan syndrome, involving neurological and behavioural disturbances, is associated with a deficiency of the enzyme that converts the purine hypoxanthine to nucleoside, namely hypoxanthine-guanine phosphoribosyl transferase.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Cabantchik, Z.I. and Ginsburg, H. (1977). Transport of uridine in human red blood cells. Demonstration of a simple carrier mechanism. J. Gen. Physiol., 69, 75–96CrossRefGoogle Scholar
  2. Cass, C.E. and Paterson, A.R.P. (1972). Mediated transport of nucleosides in human erythrocytes. Accelerative exchange diffusion of uridine and thymidine and specificity toward pyrimidine nucleosides as permeants. J. Biol. Chem., 247, 3314–3320Google Scholar
  3. Cass, C.E. and Paterson, A.R.P. (1973). Mediated transport of nucleosides by human erythrocytes. Specificity toward purine nucleosides as permeants. Biochim. Biophys. Acta, 291, 734–736CrossRefGoogle Scholar
  4. Cooper, J.R., Roth, R.H. and Kini, M.M. (1963). Biochemical and physiological function of thiamine in nervous tissue. Nature, 199, 609–610CrossRefGoogle Scholar
  5. Cornford, E.M. and Oldendorf, W.H. (1975). Independent blood-brain barrier transport systems for nucleic acid precursors. Biochim. Biophys. Acta, 394, 211–219CrossRefGoogle Scholar
  6. Dastur, D.K. et al. (1976). The B-vitamins in malnutrition with alcoholism. Br. J. Nutr., 36, 143–159CrossRefGoogle Scholar
  7. Davson, H. (1955). A comparative study of the aqueous humour and cerebrospinal fluid in the rabbit. J. Physiol., 129, 111–133CrossRefGoogle Scholar
  8. Davson, H., Hollingsworth, J.G., Carey, M.B. and Fenstennacher, J.D. (1982). Ventriculo-cisternal perfusion of twelve amino acids in the rabbit. J. Neurobiol., 13, 293–318CrossRefGoogle Scholar
  9. Davson, H., Welch, K. and Segal, M.B. (1987). Physiology and Pathophysiology of the Cerebrospinal Fluid. Churchill Livingstone, LondonGoogle Scholar
  10. Doerge, D.R., McNamee, M.G. and Ingraham, L.L. (1982). Some neurochemical properties of thiamin. Ann. N.Y. Acad. Sd., 378, 422–434CrossRefGoogle Scholar
  11. Eells, J. and Spector, R. (1983). Determination of ribonucleosides, deoxyribonucleosides and purine and pyrimidine bases in adult rabbit cerebrospinal fluid and plasma. Neurochem. Res., 8, 1307–1320CrossRefGoogle Scholar
  12. Ensminger, W.D. and Frei, E. (1977). The prevention of methotrexate toxicity by thymidine infusion in humans. Cancer Res., 37, 1857–1863Google Scholar
  13. Gjedde, A. (1980). Rapid steady-state analysis of blood-brain glucose transfer in the rat. Acta Physiol. Scand., 108, 331–339CrossRefGoogle Scholar
  14. Greenwood, J., Love, E.R. and Pratt, O.E. (1982) Kinetics of thiamine transport across the blood-brain barrier. J. Physiol., 327, 95–103CrossRefGoogle Scholar
  15. Hammerström, L. (1966). Autoradiographic studies on the distribution of C14-labelled ascorbic acid and dehydroascorbic acid. Acta Physiol. Scand., 70 (Suppl. 289)Google Scholar
  16. Hammond, J.R. and Clanachan, A.S. (1985). Species differences in the binding of 3H-nitrobenzylthioinosine to the nucleoside transport system in mammalial central nervous system membranes: evidence for interconvertible conformations of the binding site/transporter complex. J. Neurochem., 45, 527–533Google Scholar
  17. Harper, C. (1979). Wernicke’s encephalopathy: a more common disease than realised. J. Neurol. Neurosurg. Psychiat., 42, 226–231CrossRefGoogle Scholar
  18. Kalaria, R.N. and Harik, S.I. (1986). Nucleoside transporter of cerebral microvessels and choroid plexus. J. Neurochem., 47, 1849–1856CrossRefGoogle Scholar
  19. Kinsey, V.E. (1947). Transfer of ascorbic acid and related compounds across the blood-acqueous barrier. Am. J. Ophthalmol., 30, 1262–1266CrossRefGoogle Scholar
  20. Kleeman, C.R., Davson, H. and Levin, E. (1962). Urea transport in the central nervous system. Am. J. Physiol., 203, 739–747Google Scholar
  21. Oldendorf, W.H. and Davson, H. (1967). Brain extracellular space and the sink action of the cerebrospinal fluid. Arch. Neurol., 17, 196–205CrossRefGoogle Scholar
  22. Paterson, A.R.P., Kolassa, N. and Cass, C.E. (1981). Transport of nucleoside drugs in animal cells. Pharmacol. Ther., 12, 515–536CrossRefGoogle Scholar
  23. Phillips, S.C. and Cragg, B.G. (1984). Blood-brain barrier dysfunction in thiamine-deficient rats. Acta Neuropathol., 62, 235–241CrossRefGoogle Scholar
  24. Plunkett, W. and Cohen, S.S. (1977). Penetration of mouse fibroblasts by 2’-deoxyadenosine 5’-phosphate and incorporation of the nucleotide into DNA. C. Cell Physiol., 91, 261–270CrossRefGoogle Scholar
  25. Reggiani, C., Patrini, C. and Rindi, G. (1984). Nervous tissue thiamine metabolism in vivo. I. Transport of thiamine and thiamine monophosphate from plasma to different brain regions of the rat. Brain Res., 293, 319–327CrossRefGoogle Scholar
  26. Ridge, B.D. and Fairhurst, E. (1976). Ascorbic acid concentrations in human plasma and cerebrospinal fluid. Proc. Nutr. Soc., 35, 57–58ACrossRefGoogle Scholar
  27. Sharma, A.K. and Quastel, J.H. (1965). Transport and metabolism of thiamine in rat brain cortexin vitro. Biochem. J., 94, 790–800CrossRefGoogle Scholar
  28. Spector, R. (1976). Thiamine transport in the central nervous system. Am. J. Physiol., 230, 1101–1107Google Scholar
  29. Spector, R. (1977). Vitamin homeostasis in the central nervous system. Nem Engl. J. Med., 296, 1393–1398CrossRefGoogle Scholar
  30. Spector, R. (1980a). Thymidine accumulation by choroid plexus in vitro. Arch. Biochem. Biophys., 205, 85–93CrossRefGoogle Scholar
  31. Spector, R. (1980b). Thymidine transport in the central nervous system. J. Neurochem., 35, 1092–1098CrossRefGoogle Scholar
  32. Spector, R. (1981). Penetration of ascorbic acid from cerebrospinal fluid into brain. Exp. Neurol., 72, 645–653CrossRefGoogle Scholar
  33. Spector, R. (1982). Nucleoside transport in choroid plexus: mechanism and specificity. Arch. Biochem. Biophys., 216, 693–703CrossRefGoogle Scholar
  34. Spector, R. (1986). Nucleoside and vitamin homeostasis in the mammalian central nervous system. Ann. N.Y. Acad. Sci., 481, 221–230CrossRefGoogle Scholar
  35. Spector, R. (1988). Hypoxanthine transport and metabolism in the central nervous system. J. Neurochem., 50, 969–978CrossRefGoogle Scholar
  36. Spector, R. and Berhnger, W.G. (1982). Localization and mechanism of thymidine transport in the central nervous system. J. Neurochem., 39, 837–841CrossRefGoogle Scholar
  37. Spector, R. and Boose, B. (1984). Accumulation of pantothenic acid by the isolated choroid plexus and brain slices in vitro. J. Neurochem., 43, 472–478CrossRefGoogle Scholar
  38. Spector, R. and Eells, J. (1984). Nucleoside and vitamin transport into the central nervous system. Fed. Proc., 43, 196–200Google Scholar
  39. Spector, R. and Huntoon, S. (1983). Deoxycytidine transport and mechanism in choroid plexus. J. Neurochem., 40, 1474–1480CrossRefGoogle Scholar
  40. Spector, R. and Mock, D. (1987). Biotin transport through the blood-brain bamer. J. Neurochem., 48, 400–404CrossRefGoogle Scholar
  41. Spector, R., Sivesind, C. and Kinzelaw, D. (1986). Pantothenic acid transport through the blood-brain barrier. J. Neurochem., 47, 966–971CrossRefGoogle Scholar
  42. Stone, T.W. (1981). Physiological roles for adenosine and adenosine 5’-triphosphate in the nervous system. Neuroscience, 6, 523–555CrossRefGoogle Scholar
  43. Takasato, Y., Rapoport, S.I. and Smith, Q.R. (1984). An in situ brain perfusion technique to study cerebrovascular transport in the rat. Am. J. Physiol., 247, H484–H493Google Scholar
  44. Ungemach, F.R. and Hegner, D. (1978). Uptake thymidine into isolated rat hepatocytes. Hoppe-Seylers Z. Physiol. Chem., 359, 845–856CrossRefGoogle Scholar
  45. Von Muralt, A. (1947). Thiamine and peripheral neurophysiology. Vitamins & Hormones, 5, 93–118CrossRefGoogle Scholar
  46. Whittam, R. (1960). The high permeability of human red cells to adenine and hypoxanthine and their ribosides. J. Physiol., 154, 614–623CrossRefGoogle Scholar
  47. Wohlhueter, R.M., Marg, R. and Plagemann, G.W. (1979). Thymidine transport and specificity of the transport system. Biochim. Biophys. Acta, 553, 262–283CrossRefGoogle Scholar
  48. Wu, P.H. and Phillis, J.W. (1982). Uptake of adenosine by isolated rat brain capillaries. J. Neurochem., 38, 687–690CrossRefGoogle Scholar
  49. Young, J.D. (1978). Nucleoside transport in sheep erythrocytes: genetically controlled transport variation and its influence on erythrocyte ATP concentrations. J. Physiol., 277, 325–378CrossRefGoogle Scholar
  50. Zaharko, D.S., Boltern, B.J., Chiuten, D. and Wiernik, P.H. (1979). Pharmacokinetic studies during phase 1 trials of high-dose thymidine infusions. Cancer Res., 39, 4777–4781Google Scholar
  51. Zloković, B.V., Begley, D.J., Djuricić, B.M. and Mitrović, D.M. (1986). Measurement of solute transport across the blood-brain barrier in the perfused guinea pig brain. J. Neurochem., 46, 1444–1459CrossRefGoogle Scholar

Copyright information

© The authors 1993

Authors and Affiliations

  • Hugh Davson
    • 1
  • Berislav Zloković
    • 2
  • Ljubisa Rakić
    • 3
  • Malcolm B. Segal
    • 1
  1. 1.Sherrington School of Physiology UMDSGuy’s and St Thomas’s HospitalsLondonUK
  2. 2.USC School of MedicineLos AngelesUSA
  3. 3.School of MedicineBelgradeSerbia

Personalised recommendations