Advertisement

Transport of Glucose and Amino Acids in the Central Nervous System

  • Hugh Davson
  • Berislav Zloković
  • Ljubisa Rakić
  • Malcolm B. Segal
Chapter

Abstract

Glucose is the main source of energy for the central nervous system, so that the dynamics of its supply from blood are of great interest, especially since the central nervous tissue does not store glycogen to any great extent. Thus, the continuous metabolism of glucose must be adequately maintained by a continuous supply of the metabolite from the blood. Sugars, like amino acids, are highly water-soluble, and, being relatively large molecules, they are unlikely to penetrate the capillary membrane of nervous tissue to any extent in the absence of special mechanisms. That special mechanisms exist for both classes of metabolite has already been made clear, the transport from blood to nervous tissue being of the carrier-mediated, or facilitated, type, exhibiting Michaelis-Menten kinetics from which the two parameters, Km and Vmax may be derived, Km being regarded as the reciprocal of the affinity of the molecule for the hypothetical carrier in the capillary membrane, or, more specifically, the concentration of the solute at which the carrier is half-saturated. Vmax is the maximum rate of transport across the capillary, obtained by extrapolating the rate to zero solute concentration, and is an index to the number of carrier sites available to the solute.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ames, A., Higashi, K. and Nesbett, F.B. (1965). A relation of potassium concentration in choroid plexus fluid to that in plasma. J. Physiol., 181, 506–515PubMedPubMedCentralCrossRefGoogle Scholar
  2. Atkinson, A.J. and Weiss, M.F. (1969). Kinetics of blood-cerebrospinal fluid glucose transfer in the normal dog. Am. J. Physiol., 216, 1120–1125PubMedGoogle Scholar
  3. Bachelard, H.S. (1971). Specificity and kinetic properties of monosaccharide uptake into guinea pig cerebral cortex in vitro. J. Neurochem., 18, 213–222PubMedCrossRefGoogle Scholar
  4. Bachelard, H.S., Daniel, P.M., Love, E.R. and Pratt, O.E. (1973). The transport of glucose into the brain of the rat in vivo. Proc. Roy. Soc. B, 183, 71–82CrossRefGoogle Scholar
  5. Banks, W.A. and Kastin, A.J. (1990). Peptide transport systems for opiates across the blood-brain barrier. Am. J. Physiol., 259, E1-E10Google Scholar
  6. Baños, G., Daniel, P.M., Moorhouse, S.R. and Pratt, O.E. (1973). The influx of amino acids into the brain of the rat in vivo: the essential compared with the non-essential amino acids. Proc. Roy. Soc. B, 183, 59–70CrossRefGoogle Scholar
  7. Battistin, L., Grynbaum, A. and Lajtha, A. (1971). The uptake of various amino acids by the mouse brain. Brain Res., 29, 85–99PubMedCrossRefGoogle Scholar
  8. Beloff-Chain, A., Chain, E.B., Masi, I. and Pocchiari, F. (1955). Fate of uniformly labelled 14C glucose in brain slices. Proc. Roy. Soc. B, 144, 22–28CrossRefGoogle Scholar
  9. Beneviste, H. (1989). Brain microdialysis. J. Neurochem., 52, 1667–1678CrossRefGoogle Scholar
  10. Beneviste, H. and Diemer, W.H. (1987). Cellular reactions to implantation of a microdialy-sis tube in the rat hippocampus. Acta Neuropathol., 74, 234–238CrossRefGoogle Scholar
  11. Beneviste, H., Hansen, A.J. and Ottosen, N.S. (1989). Detennination of brain interstitial concentrations by microdialysis. J. Neurochem., 52, 1741–1750CrossRefGoogle Scholar
  12. Beneviste, H. and Hüttenmeier, P.C. (1990). Microdialysis-theory and application. Progr. Neurobiol., 35, 195–215CrossRefGoogle Scholar
  13. Betz, A.L., Firth, J.A. and Goldstein, G.W. (1980). Polarity of the blood-brain barrier: distribution of enzymes between the luminal and antiluminal membranes of brain capillary endothelial cells. Brain Res., 192, 17–28PubMedCrossRefGoogle Scholar
  14. Betz, A.L. and Goldstein, G.W. (1978). Polarity of the blood-brain barrier: neutral amino acid transport into isolated brain capillaries. Science, 202, 225–227PubMedCrossRefGoogle Scholar
  15. Betz, A.L. and Iannotti, I. (1983). Simultaneous determination of regional cerebral blood flow and blood-brain glucose transport kinetics in the gerbil. J. Cereb. Blood Flow Metab. 3, 193–199PubMedCrossRefGoogle Scholar
  16. Birnbaum, M.J., Haspel, H.C. and Rosen, O.M. (1986). Cloning and characterization of a cDNA encoding the rat brain glucose-transporter protein. Proc. NatlAcad. Sci. USA, 83, 5784–5788CrossRefGoogle Scholar
  17. Bito, L.Z. and Davson, H. (1966). Local variations in cerebrospinal fluid composition and its relationship to the composition of the extracellular fluid of the cortex. Exp. Neurol., 14, 264–280PubMedCrossRefGoogle Scholar
  18. Bito, L.Z., Davson, H., Levin, E., Murray, M. and Snider, N. (1966). The concentrations of amino acids and other electrolytes in cerebrospinal fluid, in vivo dialysate of brain and blood plasma of the dog. J. Neurochem., 13, 1057–1067PubMedCrossRefGoogle Scholar
  19. Boado, R.J. and Pardridge, W.M. (1990). The brain-type glucose transporter mRNA is specifically expressed at the blood-brain barrier. Biochem. Biophys. Res. Comm., 166, 174–179PubMedCrossRefGoogle Scholar
  20. Bradbury, M.W.B. and Brø ndsted, H.E. (1973). Sodium dependent transport of sugars and iodide from cerebral ventricles of the rabbit. J. Physiol., 234, 127–143PubMedPubMedCentralCrossRefGoogle Scholar
  21. Bradbury, M.W.B. and Davson, H. (1964). The transport of urea, creatinine and certain monosaccharides between blood and fluid perfusing the cerebral ventricular system of rabbits. J. Physiol., 170, 195–211PubMedPubMedCentralCrossRefGoogle Scholar
  22. Bradbury, M.W.B. and Stulcova, B. (1970). Efflux mechanism contributing to the stability of the potassium concentration in cerebrospinal fluid. J. Physiol., 208, 415–430PubMedPubMedCentralCrossRefGoogle Scholar
  23. Brøndsted, H.E. (1970a). Cerebrospinal fluid glucose and phlorrhizin. Acta Neurol. Scand., 46, 637–641PubMedCrossRefGoogle Scholar
  24. Brøndsted, H.E. (1970b). Ouabain-sensitive carrier-mediated transport of glucose from the cerebral ventricles to surrounding tissues in the cat. J. Physiol., 208, 187–201PubMedPubMedCentralCrossRefGoogle Scholar
  25. Bryan, R.M., Hawkins, R.A., Mans, A.M., Davis, D.W. and Page, R.B. (1983). Cerebral glucose utilization in awake unrestrained rats. Am. J. Physiol., 244, C270–C275Google Scholar
  26. Buschiazzo, P.M., Terrell, E.B. and Regen, D.M. (1970). Sugar transport across the blood-brain barrier. Am. J. Physiol., 219, 1505–1513PubMedGoogle Scholar
  27. Cancilla, P.A. and DeBault, L.E. (1983). Neutral amino acid transport properties of cerebral endothelial cells in vitro. J. Neuropathol. F,xp. Neurol., 42, 191–199CrossRefGoogle Scholar
  28. Cangiano, C. et al. (1983). Brain microvessels take up large neutral amino acids in exchange for glutamine. Cooperative role of Na+-dependent and Na+-independent systems. J. Biol. Chem., 258, 8949–8954PubMedGoogle Scholar
  29. Carver, M.J. (1965). Influence of phenylalanine administration on the free amino acids of brain and liver in the rat. J. Neurochem., 12, 45–50PubMedCrossRefGoogle Scholar
  30. Christensen, H.N. (1969). Some special kinetic problems of transport. Adv. Enzymol., 32, 1–31PubMedGoogle Scholar
  31. Christensen, H.N. (1985). On the strategy of kinetic discrimination of amino acid transport systems. J. Membrane Biol., 84, 97–103CrossRefGoogle Scholar
  32. Christensen, H.N. and Kilberg, M.S. (1987). Amino acid transport across the plasma membrane: role of regulation in interorgan flow. In Yudilevich, D.L. and Boyd, C.A.C. (Eds), Amino Acid Transport in Animal Cells. Macmillan, Press, LondonGoogle Scholar
  33. Cleland, W.W. (1967). The statistical analysis of enzyme kinetic data. Adv. Enzymol, 29, 1–32PubMedGoogle Scholar
  34. Cremer, J.E., Ray, D.E., Sarna, G.S. and Cunningham, V.J. (1981). A study of the kinetic behaviour of glucose based on simultaneous estimation of influx and phosphorylation in brain regions of rats in different physiological states. Brain Res., 221, 331–342PubMedCrossRefGoogle Scholar
  35. Crone, C. (1963). The permeability of capillaries of various organs as determined by the use of the ‘indicator diffusion’ method. Acta Physiol. Scand., 58, 292–305PubMedCrossRefGoogle Scholar
  36. Crone, C. (1965). Facilitated transfer of glucose from blood into brain tissue. J. Physiol., 181, 103–113PubMedPubMedCentralCrossRefGoogle Scholar
  37. Crowdon, W.A., Bratton, T.S., Houston, M.C., Tarpley, H.L. and Regen, D.M. (1971). Brain glucose metabolism in the intact mouse. Amer. J. Physiol., 221, 1738–1745Google Scholar
  38. Daniel, P.M., Noorhouse, S.R. and Pratt, O.E. (1976). Do changes in blood levels of other aromatic amino acids influence levodopa therapy? Lancet, i, 95CrossRefGoogle Scholar
  39. Davson, H. (1955). A comparative study of the aqueous humour and cerebrospinal fluid in the rabbit. J. Physiol., 129, 111–133PubMedPubMedCentralCrossRefGoogle Scholar
  40. Davson, H. (1958). Some aspects of the relationship between the cerebrospinal fluid and the central nervous system. In The Cerebrospinal Fluid. Ciba Foundation Symposium. Churchill, London, pp. 189–203Google Scholar
  41. Davson, H. (1967). Physiology of the Cerebrospinal Fluid. Churchill, LondonGoogle Scholar
  42. Davson, H. (1976). The blood-brain barrier. J. Physiol., 255, 1–28PubMedPubMedCentralCrossRefGoogle Scholar
  43. Davson, H., Begley, D.J., Chain, D.G., Briggs, F.O. and Shepherd, M.T. (1986). Steady-state distribution of cycloleucine and α-aminoisobutyric acid between plasma and cerebrospinal fluid. Exp. Neurol., 91, 163–173PubMedCrossRefGoogle Scholar
  44. Davson, H., Hollingsworth, J.G., Carey, M.B. and Fenstermacher, J.D. (1982). Ventriculo-cisternal perfusion of twelve amino acids in the rabbit. J. Neurobiol., 13, 293–318PubMedCrossRefGoogle Scholar
  45. Davson, H., Welch, K. and Segal, M.B. (1987). Physiology and Pathophysiology of the Cerebrospinal Fluid. Churchill Livingstone, LondonGoogle Scholar
  46. Deane, R. and Segal, M.B. (1982). The transport of sugars by the choroid plexus of the sheep. J. Physiol., 326, 19P-20PGoogle Scholar
  47. Deane, R. and Segal, M.B. (1985).The transport of sugars across the perfused choroid plexus of the sheep. J. Physiol., 362, 245–260PubMedPubMedCentralCrossRefGoogle Scholar
  48. Des Rosier, M.H., Kennedy, C., Patlak, C.S., Pettigrew, K.D. and Sokoloff, L. (1974). Relationship between local cerebral blood flow and glucose utilization in the rat. Neurology, 24, 389Google Scholar
  49. Dick, A.P.K. and Harik, S.I. (1986). Distribution of the glucose transporter in the mammalian brain. J. Neurochem., 46, 1406–1411PubMedCrossRefGoogle Scholar
  50. Dick, A.P.K., Harik, S.I., Klip, A. and Walker, D.M. (1984). Identification and character-ization of the glucose transporter of the blood-brain barrier by cytochalasin B binding and immunological reactivity. Proc. Natl Acad. Sci. USA, 81, 7233–7237PubMedPubMedCentralCrossRefGoogle Scholar
  51. Dickinson, J.C. and Hamilton, P.B. (1966). The free amino acids of human cerebrospinal fluid determined by ion exchange chromatography. J. Neurochem., 13, 1179–1187PubMedCrossRefGoogle Scholar
  52. Drewes, L.R., Horton, R.W., Betz, A.L. and Gilboe, D.D. (1977). Cytochalasin B inhibition of brain glucose transport and the influence of blood composition on inhibitor concentration. Biochim. Biophys. Acta, 471, 477–486PubMedCrossRefGoogle Scholar
  53. Feise, G.K., Kogure, K., Busto, R., Scheinberg, P. and Rehmuth, O.M. (1976). Effect of insulin hypoglycaemia upon cerebral energy metabolism and EEG activity in the rat. Brain Res., 126, 263–280CrossRefGoogle Scholar
  54. Fenstermacher, J.D. and Davson, H. (1982). Distribution of two model amino acids from cerebrospinal fluid to brain and blood. Am. J. Physiol., 242, F171–F180Google Scholar
  55. Fishman, R.A. (1964). Carrier transport of glucose between blood and cerebrospinal fluid. Am. J. Physiol., 206, 836–844PubMedGoogle Scholar
  56. Franldin, G.M., Dudzinski, D.S. and Cutler, R.W.P. (1975). Amino acid transport into the cerebrospinal fluid of the rat. J. Neurochem., 25, 367–372Google Scholar
  57. Gjedde, A. (1980). Rapid steady-state analysis of blood-brain glucose transfer in the rat. Acta Physiol. Scand., 108, 331–339PubMedCrossRefGoogle Scholar
  58. Gjedde, A., Hansen, A.J. and Siemkowicz, E. (1980). Rapid simultaneous determination of regional blood flow and blood-brain glucose transfer in brain of rat. Acta Physiol. Scand., 108, 321–330PubMedCrossRefGoogle Scholar
  59. Gjedde, A. and Rasmussen, M. (1980). Pentobarbital anesthesia reduces blood-brain glucose transfer in the rat. Neurochem., 35, 1382–1387CrossRefGoogle Scholar
  60. Gjessing, L.R., Gjesdahl, P. and Sjaastad, O. (1972). The free amino acids in human cerebrospinal fluid. J. Neurochem., 19, 1807–1808PubMedCrossRefGoogle Scholar
  61. Hawkins, R., Hass, W.K. and Ransohoff, J. (1979). Measurement of regional brain glucose utilization in vivo using 2.14C-glucose. Stroke, 10, 690–703PubMedCrossRefGoogle Scholar
  62. Hawkins, R.A., Mans, A.M., Davis, D.W., Hibbard, L.S. and Lu, D.M. (1983). Glucose availability to individual cerebral structures is correlated to glucose metabolism. J. Neurochem., 40, 1013–1018PubMedCrossRefGoogle Scholar
  63. Humoller, F.L., Mahler, D J. and Parker, M.M. (1966). Int. J. Neuropsychiat., 2, 293–297 (quoted by McGale, 1977)Google Scholar
  64. Kety, S.S. (1951). The theory and application of the exchange of inert gas at the lungs and tissues. Pharmacol. Rev., 3, 1–41PubMedGoogle Scholar
  65. Knauff, H.G., Schabert, P. and Zickergraf, H. (1961). Die Konzentration der freien Aminosäuren in Liquor cerebrospinalis und ihre Beziehungen zur Konzentration der freien Plasmaaminosäuren. Klin. Wschr., 39, 778–784PubMedCrossRefGoogle Scholar
  66. LaManna, J.C. and Harik, S.I. (1985). Regional comparison of brain glucose influx. Brain Res., 326, 299–305PubMedCrossRefGoogle Scholar
  67. Lassen, H.N. (1978). Scientific American, 239, 62PubMedCrossRefGoogle Scholar
  68. Lerma, J., Herranz, A.S., Herreras, O., Abraira, V. and Del Rio, R.M. (1986). In vivo determination of extracellular concentration of amino acids in the rat hippocampus. A method based on brain dialysis and computerized analysis. Brain Res., 384, 145–155PubMedCrossRefGoogle Scholar
  69. Lewis, L.D., Ljunggren, B., Norberg, K. and Siesjo, B.K. (1974). Changes in carbohydrate substances, amino acids and ammonia in the brain during insulin-induced hypogly-caemia, J. Neurochem., 23, 659–671PubMedCrossRefGoogle Scholar
  70. Lönnroth, P., Jansson, P.-A. and Smith, U. (1987). A microdialysis method allowing characterization of intercellular water space in humans. Am. J. Physiol., 253, E228–E231Google Scholar
  71. Lorenzo, A.V. (1977). Factors governing the composition of the cerebrospinal fluid. Exp. Eye Res., 25, (Suppl.), 205–228PubMedCrossRefGoogle Scholar
  72. Lund-Andersen, H. (1979). Transport of glucose from blood to brain. Physiol. Rev., 59, 305–352PubMedGoogle Scholar
  73. Lund-Andersen, H. and Kjeldsen, C.S. (1976). Uptake of glucose analogues by rat brain cortex: a kinetic analysis based upon a model. J. Neurochem., 27, 361–368PubMedCrossRefGoogle Scholar
  74. McGale, E.H.F., Pye, I.F., Stonier, C., Hutchinson, E.C. and Aber, G.M. (1977). Studies on the inter-relationship between cerebrospinal fluid and plasma amino acid concentra-tions in normal individuals. J. Neurochem., 29, 291–297PubMedCrossRefGoogle Scholar
  75. Meister, A. (1973). On the enzymology of amino acid transport. Science, 180, 33–39PubMedCrossRefGoogle Scholar
  76. Miller, L.P., Pardridge, W.M., Braun, L.D. and Oldendorf, W.H. (1985). Kinetic constants for blood-brain barrier amino acid transport in conscious rats. J. Neurochem., 45, 1427–1432PubMedCrossRefGoogle Scholar
  77. Momma, S., Aoyagi, M., Rapoport, S.I. and Smith, QR. (1987). Phenylalanine transport across the blood-brain barrier as studied with the in situ brain perfusion technique. J. Neurochem., 48, 1291–1300PubMedCrossRefGoogle Scholar
  78. Oldendorf, W.H. (1971). Brain uptake of radiolabeled amino acids, amines and hexoses after arterial injection. Am. J. Physiol., 221, 1629–1639PubMedGoogle Scholar
  79. Oldendorf, W.H. (1973a). Stereo-specificity of blood-brain barrier permeability to amino acids. Am. J. Physiol., 224, 967–969PubMedGoogle Scholar
  80. Oldendorf, W.H. (1973b). Saturation of blood-brain barrier transport of amino acids in phenylketonuria. Arch. Neurol., 28, 45–48PubMedCrossRefGoogle Scholar
  81. Oldendorf, W.H. and Szabo, J. (1976). Amino acid assignment to one of three blood-brain barrier amino acid carriers. Am. J. Physiol., 230, 94–98PubMedGoogle Scholar
  82. Orlowski, M. (1963). Arch. Immunol. Exp. Ther., 11, 1 (quoted by Orlowski et al., 1974)Google Scholar
  83. Orlowski, M. and Meister, A. (1970). The γ-glutamyl cycle: a possible transport system for amino acids. Proc. Natl Acad. Sci., 67, 1248–1255PubMedPubMedCentralCrossRefGoogle Scholar
  84. Orlowski, M., Sessa, G. and Green, J.P. (1974)γ-Glutamyl transpeptidase in brain capillaries: possible site of a blood-brain barrier for amino acids. Science, 184, 66–68PubMedCrossRefGoogle Scholar
  85. Pappenheimer, J.R. and Setchell, B.P. (1973). Cerebral glucose transport and oxygen consumption in sheep and rabbits. J. Physiol., 233, 529–551PubMedPubMedCentralCrossRefGoogle Scholar
  86. Pardridge, W.M. (1977). Kinetics of competitive inhibition of neutral amino acid transport across the blood-brain barrier. J. Neurochem., 28, 103–108PubMedCrossRefGoogle Scholar
  87. Pardridge, W.M., Crane, P.D., Mietus, L J. and Oldendorf, W.H. (1982). Kinetics of regional blood-brain barrier transport and brain phosphorylation of glucose and 2–deoxyglucose in the barbiturate-anesthetized rat. J. Neurochem. 38, 560–568PubMedCrossRefGoogle Scholar
  88. Pardridge, W.M. and Fierer, G. (1990). Transport of tryptophan into brain from the circulating albumin bound pool in rats and rabbits. J. Neurochem., 54, 971–976PubMedCrossRefGoogle Scholar
  89. Pardridge, W.M. and Oldendorf, W.H. (1975). Kinetics of blood-brain barrier transport of hexoses. Biochim. Biophys. Acta, 382, 377–392PubMedCrossRefGoogle Scholar
  90. Patlak, C.S. and Fenstermacher, J.D. (1975). Measurements of blood-brain transfer constants by ventriculocisternal perfusion. Am. J. Physiol., 229, 877–884PubMedGoogle Scholar
  91. Perry, T.L., Hansen, S., Diamond, S. and Stedman, D. (1969). Plasma-aminoacid levels in Huntington’s chorea. Lancet, i, 806–808CrossRefGoogle Scholar
  92. Perry, T.L., Hansen, S. and Kennedy, J. (1975). CSF amino acids and plasma-CSF amino acid ratios in adults. J. Neurochem., 24, 587–589PubMedCrossRefGoogle Scholar
  93. Plum, C.M. (1974). Free amino acid levels in the cerebrospinal fluid of normal humans and their variations in cases of epilepsy and Spielmeyer-Vogt disease. J. Neurochem., 23, 595–600PubMedCrossRefGoogle Scholar
  94. Pollay, M. and Stevens, A. (1979). Simultaneous measurement of regional blood flow and glucose extraction in rat brain. Neurochem. Res., 4, 109–123PubMedCrossRefGoogle Scholar
  95. Pollay, M., Stevens, A., Estrada, E. and Kaplan, R. (1972). Extracorporeal perfusion of choroid plexus. J. Appl. Physiol., 32, 612–617PubMedGoogle Scholar
  96. Preston, J.E. and Segal, M.B. (1990). The steady-state amino acid flues across the perfused choroid plexus of the sheep. Brain Res., 525, 275–279PubMedCrossRefGoogle Scholar
  97. Preston, J.E., Segal, M.B., Walley, G.J. and Zloković, B.V. (1989). Neutral amino acid uptake by the isolated perfused sheep choroid plexus. J. Physiol., 408, 31–43PubMedPubMedCentralCrossRefGoogle Scholar
  98. Rassan, D.K. (1990). Transport into brain of albumin-bound amino acids. J. Neurophysiol., 55, 722Google Scholar
  99. Reivick, M., Jehle, J., Sokoloff, L. and Kety, S.S. (1969). Measurement of regional cerebral blood flow with antipyrine-14C in awake cats. J. Appl. Physiol., 27, 296–300Google Scholar
  100. Reivick, M., Sokoloff, L., Kennedy, C. and Des Rosier, M. (1975). An autoradiographic method for the measurement of local glucose metabolism in the brain. In Ingvar, D.H. and Lassen, N.A. (Eds), Brain Work: The Coupling of Function Metabolism and Blood Flow in the Brain. Munksgaard, Copenhagen, pp. 377–384Google Scholar
  101. Sage, J.I., Van Uitert, R.L. and Duffy, T.E. (1981). Simultaneous measurement of cerebral blood flow and unidirectional movement of substances across the blood-brain barrier: theory, method, and application to leucine. J. Neurochem., 36, 1731–1738PubMedCrossRefGoogle Scholar
  102. Sandberg, M., Butcher, S.P. and Hagberg, H. (1986). Extracellular overflow ot neuroactive amino acids during severe insulin-induced hypoglycaemia: in vivo dialysis of the rat hippocampus. J. Neurochem., 47, 178–184PubMedCrossRefGoogle Scholar
  103. Schain, R.J. and Watanabe, K.S. (1972). Distinct patterns of entry of two non-metabolizable amino acids into brain and other organs of guinea pigs. J. Neurochem., 19, 2279–2288PubMedCrossRefGoogle Scholar
  104. Segal, M.B., Preston, J.E., Collis, C.S. and Zloković, B.V. (1990). Kinetics and Na independence of amino acid uptake by blood side of perfused sheep choroid plexus. Am. J. Physiol, 258, F1288–F1294Google Scholar
  105. Segal, M.B. and Zloković, B.V. (1990). The Blood-Brain Barrier, Amino Acids and Peptides. Kluwer Academic Publishers, Dordrecht, LondonGoogle Scholar
  106. Seta, K., Sansur, M. and Lajtha, A. (1973). The rate of incorporation of amino acids into brain proteins during infusion in the rat. Biochim. Biophys. Acta, 294, 472PubMedCrossRefGoogle Scholar
  107. Shotwell, M.A., Kilberg, M.S. and Oxender, D.L. (1983). The regulation of neutral amino acid transport in mammalian cells. Biochim. Biophys. Acta, 737, 267–284PubMedCrossRefGoogle Scholar
  108. Smith, Q.R., Mommo, S., Aoyagi, M. and Rapoport, S.I. (1987). Kinetics of neutral amino acid transport across the blood-brain barrier. J. Neurochem., 49, 1651–1658PubMedCrossRefGoogle Scholar
  109. Snodgrass, S.R., Cutler, R.W.P., Kang, E.S. and Lorenzo, A.V. (1969). Transport of neutral amino acids from feline cerebrospinal fluid. Am. J. Physiol., 217, 974–980PubMedGoogle Scholar
  110. Sokoloff, L. et al. (1977). The [14C]-deoxyglucose method for the measurement of local cerebral glucose utilization: theory, and normal values in the conscious and anesthetized rat. J. Neurochem., 28, 897–916PubMedCrossRefGoogle Scholar
  111. Spector, R. (1986). Nucleoside and vitamin homeostasis in the mammalian central nervous system. Ann. N.Y. Acad. Sci., 481, 221–230PubMedCrossRefGoogle Scholar
  112. Tossman, U. and Ungerstedt, U. (1986). Microdialysis in the study of extracellular levels of amino acids in the rat brain. Acta Physiol. Scand., 128, 9–14PubMedCrossRefGoogle Scholar
  113. Tsukada, Y., Nagata, Y., Hirano, S. and Matsutani, T. (1963). Active transport of amino acids into cerebral cortex slices. J. Neurochem., 10, 241–256PubMedCrossRefGoogle Scholar
  114. Udenfriend, S. (1961). Phenylketonuria. Am. J. Clin. Nutr., 9, 691–694PubMedGoogle Scholar
  115. Van Sande, M., Mardens, Y., Adriassene, K. and Lowenthal, A. (1970). The free amino acids in human cerebrospinal fluid. J. Neurochem., 17, 125–135PubMedCrossRefGoogle Scholar
  116. Wade, I.A. and Katzman, R. (1975). Synthetic amino acids and the nature of the L-DOPA transport at the blood-brain barrier. J. Neurochem., 25, 837–842PubMedCrossRefGoogle Scholar
  117. Weissbach, L., Handlogten, M.E., Christensen, H.N. and Kilberg, M.S. (1982). Evidence for two Na+-dependent neutral amino acid transport systems in primary cultures of rat hepatocytes. J. Biol. Chem., 257, 12006–12011PubMedGoogle Scholar
  118. Welch, K., Sadler, K. and Hendee, R. (1970). Cooperative phenomena in the permeation of sugars through the lining epithelium of the choroid plexus. Brain Res., 19, 465–482PubMedCrossRefGoogle Scholar
  119. Young, M.J. and Bradford, H.F. (1986). Excitatory amino acid neurotransmitters in the corticostriate pathway: studies using intracerebral microdialysis in vivo. J. Neurochem., 47, 1399–1404PubMedCrossRefGoogle Scholar
  120. Yudilevich, D.L. and De Rose, N. (1971). Blood-brain transfer of glucose and other molecules measured by rapid indicator dilution. Am. J. Physiol., 220, 841–846PubMedGoogle Scholar

Copyright information

© The authors 1993

Authors and Affiliations

  • Hugh Davson
    • 1
  • Berislav Zloković
    • 2
  • Ljubisa Rakić
    • 3
  • Malcolm B. Segal
    • 1
  1. 1.Sherrington School of Physiology UMDSGuy’s and St Thomas’s HospitalsLondonUK
  2. 2.USC School of MedicineLos AngelesUSA
  3. 3.School of MedicineBelgradeSerbia

Personalised recommendations