Advertisement

5-HT1A Receptors in Anxiety

  • J. De Vry
  • T. Glaser
  • T. Schuurman
  • R. Schreiber
  • J. Traber
Chapter

Abstract

Brain 5-HT receptors have been classified in at least six subtypes (5-HT1A, 1B, 1C, 1D, 2 AND 3; Peroutka, 1988), among which the 5-HT1A subtype has been the focus of intense research during the last few years. This receptor type is located both presynaptically on the 5-HT cell bodies (somatodendritic receptors), predominantly in the dorsal and median raphe nuclei and postsynaptically, predominantly in the limbic system (Verge et al., 1985; Weissmann-Nanopoulos et al., 1985). Activation of presynaptic 5-HT1A receptors with 5-HT1A ligands inhibits serotonergic neurotransmission (Hamon et al., 1988; Hjorth and Magnusson, 1988; Sharp et al., 1989a, b) and the physiological role of these receptors is probably to provide the brain with an autoinhibitory feedback system controlling 5-HT neurotransmission. At the postsynaptic level, activation of 5-HT1A receptors results in neuronal inhibition, the consequences of which are not well understood (e.g. Sprouse and Aghajanian, 1988; Martin and Mason, 1987).

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Amsterdam, J. D., Berwish, N., Potter, L. and Rickeis, K. (1987). Open trial of gepirone in the treatment of depressive disorder. Curr. Ther. Res., 41, 185–93.Google Scholar
  2. Aghajanian, G. K. and Wang, R. Y. (1978). In Lipton, M. A., Di Mascio, A. and Killam, K. F. (eds.), Psychopharmacology: A Generation of Progress, Raven, New York, 171–83.Google Scholar
  3. Beer, M., Kennett, G. A. and Curzon, G. (1990). A single dose of 8-OH-DPAT reduces raphe binding of [3H]8-OH-DPAT and increases the effect of raphe stimulation on 5-HT metabolism. Eur. J. Pharmacol., 178, 179–87.PubMedCrossRefGoogle Scholar
  4. Benton, B. and Nastiti, K. (1988). The influence of psychotropic drugs on the ultrasonic calling of mouse pups. Psychopharmacology, 95, 99–102.PubMedCrossRefGoogle Scholar
  5. Bill, D. J., Fletcher, A. and Knight, M. (1989). Actions of 5-HT1A ligands and standard anxiolytics on mouse exploratory behaviour in a two-compartment light:dark arena. Br. J. Pharmacol., 98, 679P.Google Scholar
  6. Blackburn, T. P., Kemp, J. D., Martin, D. A. and Cox, B. (1984). Evidence that 5-HT agonist-induced rotational behaviour in the rat is mediated via 5-HT1 receptors. Psychopharmacology, 83, 163–5.PubMedCrossRefGoogle Scholar
  7. Blier, P. and de Montigny, C. (1987). Modification of 5-HT neuron properties by sustained administration of the 5-HT1A agonist gepirone: electrophysiological studies in the rat brain. Synapse, 1, 470–80.PubMedCrossRefGoogle Scholar
  8. Bockaert, J., Dumuis, A., Bouhelal, R., Sebben, M. and Cory, R. N. (1987). Piperazine derivatives including the putative anxiolytic drugs, buspirone and ipsapirone, are agonists at 5-HT1A receptors negatively coupled with adenylate cyclase in hippocampal neurons. Arch. Pharmacol., 335, 588–92.CrossRefGoogle Scholar
  9. Carli, M. and Samanin, R. (1988). Potential anxiolytic properties of 8-hydroxy-2-(di-N-propylamino)tetralin, a selective serotonin1A receptor agonist. Psychopharmacology, 94, 84–91.PubMedCrossRefGoogle Scholar
  10. Carli, M., Prontera, C. and Samanin, R. (1989). Evidence that central 5-hydroxytryptaminergic neurones are involved in the anxiolytic activity of buspirone. Br. J. Pharmacol., 96, 829–36.PubMedCentralPubMedCrossRefGoogle Scholar
  11. Cervo, L. and Samanin, R. (1987). Potential antidepressant properties of 8-hydroxy-2-(di-n-propylamino)tetralin, a selective serotonin1A receptor agonist. Eur. J. Pharmacol., 144, 223–9.PubMedCrossRefGoogle Scholar
  12. Cervo, L., Grignaschi, G. and Samanin, R. (1988a). Different effects of intracerebral and systemic administration of buspirone in the forced swimming test: involvement of a metabolite. Life Sci., 43, 2095–102.PubMedCrossRefGoogle Scholar
  13. Cervo, L., Grignaschi, G. and Samanin, R. (1988b). 8-hydroxy-2-(di-n-propylamino) tetralin, a selective serotonin1A receptor agonist, reduces the immobility of rats in the forced swimming test by acting on the nucleus raphe dorsalis. Eur. J. Pharmacol., 158, 53–9.PubMedCrossRefGoogle Scholar
  14. Chopin, P. and Briley, M. (1987). Animal models of anxiety: the effects of compounds that modify 5-HT neurotransmission. Trends Pharmacol. Sci., 8, 383–8.CrossRefGoogle Scholar
  15. Cooper, S. and Desa, A. (1987). Benzodiazepines and putative 5-HT1A agonists increase hypertonic saline consumption in rehydrating rats. Pharmacol. Biochem. Behav., 28, 187–91.PubMedCrossRefGoogle Scholar
  16. Critchley, M. A. E. and Handley, S. L. (1989). Dorsal raphe lesions abolish effects of 8-OH-DPAT and ipsapirone in the X-maze. Br. J. Pharmacol., 96, 309P.Google Scholar
  17. Cutler, M. G. and Dixon, A. K. (1988). Effects of ipsapirone on the behaviour of mice during social encounters. Neuropharmacology, 27, 1039–44.PubMedCrossRefGoogle Scholar
  18. Csanalosi, I., Schweizer, E., Case, W. G. and Rickeis, K. (1987). Gepirone in anxiety: A pilot study. J. Clin. Psychopharm, 7, 31.CrossRefGoogle Scholar
  19. Davidson, T. L. (1990). The long-term effects of diazepam, lorazepam and buspirone on behavioural suppression by a shock signal. Prog. Neuropsychopharmacol. Biol. Psychiat., 14, 223–36.CrossRefGoogle Scholar
  20. Davis, M., Cassella, J. V. and Kehne, J. H. (1988). Serotonin does not mediate anxiolytic effects of buspirone in the fear-potentiated startle paradigm: Comparison with 8-OH-DPAT and ipsapirone. Psychopharmacology, 94, 14–20.PubMedCrossRefGoogle Scholar
  21. De Montigny, C., Blier, P. and Chaput, Y. (1990). Electrophysiological investigation of the effects of antidepressant treatments on serotonin receptors. In Paoletti, R., Vanhoutte, P. M., Brunello, N. and Maggi, F. M. (eds.), Serotonin: From Cell Biology to Pharmacology and Therapeutics, Kluwer, Dordrecht, 499–504.CrossRefGoogle Scholar
  22. De Vivo, M. and Maayani, S. (1986). Characterization of the 5-hydroxytryptamine1A receptor-mediated inhibition of forskolin-stimulated adenylate cyclase activity in guinea pig and rat hippocampal membranes. J. Pharmacol. Exp., 238, 248–53.Google Scholar
  23. De Vry, J. and Scheiber, R. (1990). Neuro-anatomical correlate of the discriminative stimulus effects of the 5-HT1A receptor ligands 8-OH-DPAT and ipsapirone in the rat. Psychopharmacology, 101, S67.CrossRefGoogle Scholar
  24. De Vry, J., Glaser, T. and Traber, J. (1990). 5HT1A/partial agonists as receptor anxiolytics. In Paoletti, R., Vanhoutte, P. M., Brunello, N. and Maggi, F. M. (eds.), Serotonin: From Cell Biology to Pharmacology and Therapeutics, Kluwer, Dordrecht, 517–22.CrossRefGoogle Scholar
  25. De Vry, J., Schreiber, R., Horvath, E. and Traber, J. (1989). Animal models of 5-HT1A receptor function. Pharmacopsychiat., 22, 194–5.Google Scholar
  26. Dourish, C. T. (1987). Brain 5HT1A receptors and anxiety. In Dourish, C. T., Ahlenius, S. and Hutson, P. H. (eds.), Brain 5-HT1A Receptors, Ellis Horwood, Chichester, 261–77.Google Scholar
  27. Dourish, C. T., Ahlenius, S. and Hutson, P. H. (1987). Brain 5-HT1A Receptors and Anxiety, Ellis Horwood, Chichester.Google Scholar
  28. Dunn, R. W., Corbett, R. and Fielding, S. (1989). Effects of 5-HT1A receptor agonists and NMDA receptor antagonists in the social interaction test and the elevated plus maze. Eur. J. Pharmacol., 169, 1–10.PubMedCrossRefGoogle Scholar
  29. Eison, A. S., Eison, M. S., Stanley, M. and Riblet, L. A. (1986). Serotonergic mechanisms in the behavioural effects of buspirone and gepirone. Pharmacol. Biochem. Behav., 24, 701–7.PubMedCrossRefGoogle Scholar
  30. Engel, J., Hjorth, S., Svensson, K., Carlsson, A. and Liljequist, S. (1984). Anticonflict effect of the putative serotonin receptor agonist 8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT). Eur. J. Pharmacol., 105, 365–8.PubMedCrossRefGoogle Scholar
  31. File, S. E. and Hyde, J. R. G. (1978). Can social interaction be used to measure anxiety? Br. J. Pharmacol., 62, 19–24.PubMedCentralPubMedCrossRefGoogle Scholar
  32. Gardner, C. R. (1985). Pharmacological studies on the role of serotonin in animal models of anxiety. In Green, A. R. (ed.), Neuropharmacology of Serotonin, Oxford University Press, Oxford, 281–325.Google Scholar
  33. Geller, I. and Seifter, J. (1960). The effects of meprobamate, barbiturates, d-amphetamine and promazine on experimentally-induced conflict in the rat. Psychopharmacology, 1, 482–92.CrossRefGoogle Scholar
  34. Gilbert, F., Brazell, C., Tricklebank, M. D. and Stahl, S. M. (1988). Activation of the 5-HT1A receptor subtype increases rat plasma ACTH concentration. Eur. J. Pharmacol., 147, 431–9.PubMedCrossRefGoogle Scholar
  35. Giral, P., Martin, P., Soubrié, P. and Simon, P. (1988). Reversal of helpless behaviour in rats by putative 5-HT1A agonists. Biol. Psychiatry, 23, 237–42.PubMedCrossRefGoogle Scholar
  36. Glaser, T., van Rooijen, L. A. A. and Traber, J. (1988). Functional interaction of novel anxiolytics with 5-HT1A-and adrenergic receptors. Psychopharmacology, 96, S351.Google Scholar
  37. Gleeson, S. and Barrett, J. E. (1989). Discriminative stimulus effects of anxiolytics in the hippocampus. Soc. Neurosci. Abstr., 15, 633.Google Scholar
  38. Gleeson, S., Ahlers, S. T., Mansbach, R. S., Foust, J. M. and Barrett, J. E. (1989). Behavioural studies with anxiolytic drugs. VI: Effects on punished responding of drugs interacting with serotonin receptor sybtypes. J. Pharmacol. Exp. Ther., 250, 809–17.PubMedGoogle Scholar
  39. Glennon, R. A., Young, R. and Pierson, M. E. (1989). Stimulus properties of arylpiperazine second generation anxiolytics. In Bevan, P., Cools, A. R. and Archer, T. (eds.), Behavioural Pharmacology of 5-HT, Lawrence Erlbaum Associates, Hillsdale, New Jersey, 445–8.Google Scholar
  40. Goa, K. L. and Ward, A. (1986). Buspirone. A preliminary review of its pharmacological properties and therapeutic efficacy as an anxiolytic. Drugs, 32, 114–29.PubMedCrossRefGoogle Scholar
  41. Goodwin, G. M. (1989). The effects of antidepressant treatments and lithium upon 5-HT1A receptor function. Prog. Neuropsychopharmacol. Biol. Psychiat., 13, 445–51.CrossRefGoogle Scholar
  42. Goodwin, G. M., DeSouza, R. J., Green, A. R. and Heal, D. J. (1987). The pharmacology of the behavioural and hypothermic responses of the rats to 8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT). Psychopharmacology, 91, 506–11.PubMedCrossRefGoogle Scholar
  43. Goudie, A. J., Leathley, M., Deans, C. and Taylor, M. A. I. (1989). Tolerance to the behavioural effects of the selective 5-HT1A agent, ipsapirone. Behavioural Pharmacology, 1, 33–44.PubMedCrossRefGoogle Scholar
  44. Gower, A. J. and Tricklebank, M. D. (1988). Alpha2-adrenoceptor antagonist activity may account for the effects of buspirone in an anticonflict test in the rat. Eur. J. Pharmacol., 155, 129–37.PubMedCrossRefGoogle Scholar
  45. Graeff, E. O., Hunziker, M. H. L. and Graeff, F. G. (1989). Effects of ipsapirone and BAY R 1531 on learned helplessness. Brazilian J. Med. Biol. Res., 22, 1141–4.Google Scholar
  46. Gray, J. A. (1982). The Neuropsychology of Anxiety: An Enquiry into the Function of the Septo-hippocampal System, Clarendon, Oxford.Google Scholar
  47. Haleem, D. J., Kennett, G. A., Whitton, P. S. and Curzon, G. (1989). 8-OH-DPAT increases corticosterone but not other 5-HT1A receptor-dependent responses more in females. Eur. J. Pharmacol., 164, 435–43.PubMedCrossRefGoogle Scholar
  48. Hamon, M., Fattaccini, C.-M., Adrien, J., Gallissot, M.-C., Martin, P. and Gozlan, H. (1988). Alterations of central serotonin and dopamine turnover in rats treated with ipsapirone and other 5-hydroxytryptamine1A agonists with potential anxiolytic properties. J. Pharmacol. Exp. Ther., 246, 745–52.PubMedGoogle Scholar
  49. Hand, T. H., Marek, D. C., Seiden, J. and Seiden, L. S. (1989). Antidepressant-like effects of the 5-HT1A agonists buspirone, gepirone, 8-OH-DPAT and 5-MEODMT in rats on the DRL 72 sec schedule: differential blockade by methysergide and purported 5-HT1A antagonists. Soc. Neurosci. Abstr., 15, 1282.Google Scholar
  50. Hard, E. and Engel, J. (1988). Effects of 8-OH-DPAT on ultrasonic vocalization and audiogenic immobility reaction in pre-weanling rats. Neuropharmacology, 27, 981–6.PubMedCrossRefGoogle Scholar
  51. Heller, A. H., Beneke, M., Kümmel, B., Spencer, D. and Kurtz, N. M. (1990). Ipsapirone: evidence for efficacy in depression. Psychopharmacol. Bull., in press.Google Scholar
  52. Higgins, G. A., Bradbury, A. J., Jones, B. J. and Oakley, N. R. (1988). Behavioral and biochemical consequences following activation of 5-HT1-like and GABA receptors in the dorsal raphe nucleus of the rat. Neuropharmacology, 27, 993–1001.PubMedCrossRefGoogle Scholar
  53. Hirose, A., Tsuji, R., Shimizu, H., Tatsuno, T., Tanaka, H., Kumasaka, Y. and Nakamura, M. (1990). Inhibition of 8-hydroxy-2-(di-n-propylamino)tetralin and SM-3997, a novel anxiolytic drug, of the hippocampal rhythmical slow activity mediated by 5-hydroxytryptamine1A receptors. Naunyn-Schmiedeberg’s Arch. Pharmacol., 341, 8–13.Google Scholar
  54. Hjorth, S. and Magnusson, T. (1988). The 5-HT1A receptor agonist, 8-OH-DPAT, preferentially activates cell body 5-HT autoreceptors in the rat brain in vivo. Arch. Pharmacol., 338, 463–71.CrossRefGoogle Scholar
  55. Howard, J. L. and Pollard, G. T. (1990). Effects of buspirone in the Geller—Seifter conflict test with incremental shock. Drug Dev. Res., 19, 37–49.CrossRefGoogle Scholar
  56. Hutson, P. H., Donohoe, T. P. and Curzon, G. (1987). Hypothermia induced by the putative 5-HT1A agonists LY165163 and 8-OH-DPAT is not prevented by 5-HT depletion. Eur. J. Pharmacol., 143, 221–8.PubMedCrossRefGoogle Scholar
  57. Johansson, C. E., Meyerson, B. J. and Höglund, A. U. (1990). The long-term effects of 8-hydroxy-2-(di-n-porpyl-amino)tetralin (8-OH-DPAT) on copulatory and exploratory behaviour in male rats. Eur. J. Pharmacol., 178, 1–9.PubMedCrossRefGoogle Scholar
  58. Kalkman, H. O. (1990). Discriminative stimulus properties of 8-OH-DPAT in rats are not altered by pretreatment with para-chlorophenylalanine. Psychopharmacology, 101, 39–42.PubMedCrossRefGoogle Scholar
  59. Kennett, G. A., Dourish, C. T. and Curzon, G. (1987a). Antidepressant-like action of 5-HT1A agonists and conventional antidepressants in an animal model of depression. Eur. J. Pharmacol., 134, 265–74.PubMedCrossRefGoogle Scholar
  60. Kennett, G. A., Marcou, M., Dourish, C. T. and Curzon, G. (1987b). Single administration of 5-HT1A agonists decreases mediated responses: relationship to antidepressant-like action. Eur. J. Pharmacol., 138, 53–60.PubMedCrossRefGoogle Scholar
  61. Koenig, J. I., Meltzer, H. Y. and Gudelsky, G. A. (1988). 5-hydroxytryptamine1A receptor-mediated effects of buspirone, gepirone and ipsapirone. Pharmacol. Biochem. Behav., 29, 711–15.PubMedCrossRefGoogle Scholar
  62. Kostowski, W., Plaznik, A. and Stefanski, R. (1989). Intra-hippocampal buspirone in animal models of anxiety. Eur. J. Pharmacol., 168, 393–6.PubMedCrossRefGoogle Scholar
  63. Kümmel, B., Beneke, M., Krol, G., Schoellnhammer, G. and Spechtmeyer, H. (1988). Ipsapirone in the treatment of generalized anxiety disorders. Results of a phase II US-multicenter trial. Psychopharmacology, 96, S353.CrossRefGoogle Scholar
  64. Larsson, L.-G., Renyi, L., Ross, S. B., Svensson, B. and Ängeby-Möller, K. (1990). Different effects on the responses of functional pre-and postsynaptic 5-HT1A receptors by repeated treatment of rats with the 5-HT1A receptor agonist 8-OH-DPAT. Neuropharmacology, 29, 85–91.PubMedCrossRefGoogle Scholar
  65. Luscombe, G. P., Martin, K. F., Hutchins, L. J., Gosden, J. and Buckett, W. R. (1988). Involvement of 5-HT1A receptors in the antidepressant-like effect of 8-OH-DPAT in a putative model of depression in mice. Br. J. Pharmacol., 95, 784P.Google Scholar
  66. Luscombe, G. P., Martin, K. F., Hutchins, L. J. and Buckett, W. R. (1989). Attenuation of the hypothermia but not the antidepressant-like effect of 8-OH-DPAT following its repeated administration to mice. Br. J. Pharmacol., 96, 307P.CrossRefGoogle Scholar
  67. Maj, J., Deren, A., Golembiowska, K. and Moryl, E. (1989). Some central effects of ipsapirone, a new anxiolytic drug. Abstract book of the International Symposium on Serotonin: from Cell Biology to Pharmacology and Therapeutics, Florence, 183.Google Scholar
  68. Marsden, C. A. (1989). In Tyrer, P. (ed.), Psychopharmacology of Anxiety, Oxford Medical Publications, Oxford, 3–27.Google Scholar
  69. Martin, K. F. and Mason, R. (1987). Ipsapirone is a partial agonist at 5-hydroxytryptamine1A (5-HT1A) receptors in the rat hippocampus: Electrophysiological evidence. Eur. J. Pharmacol., 141, 479–83.PubMedCrossRefGoogle Scholar
  70. Martin, P., Beninger, R. J., Hamon, M. and Puech, A. J. (1990). Antidepressant-like action of 8-OH-DPAT, a 5-HT1A agonist in the learned helplessness paradigm: evidence for a post-synaptic mechanism. Behav. Brain Res., 38, 135–44.PubMedCrossRefGoogle Scholar
  71. Meller, E., Goldstein, M. and Bohmaker, K. (1990). Receptor reserve for 5-HT1A-mediated inhibition of serotonin synthesis: possible relationship to anxiolytic properties of 5-HT1A agonists. Mol. Pharmacol., 37, 231–7.PubMedGoogle Scholar
  72. Naylor, R. and Costall, B. (1971). The relationship between the inhibition of dopamine uptake and the enhancement of amphetamine stereotypy. Life Sci., 10, 909–15.CrossRefGoogle Scholar
  73. O’Connor, J. J., Rowan, M. J. and Anwyl, R. (1989). Serotonergic involvement in the inhibitory effects of repeated buspirone treatment on synaptic transmission in the hippocampus. Eur. J. Pharmacol., 167, 21–9.PubMedCrossRefGoogle Scholar
  74. Peroutka, S. J. (1988). 5-hydroxytryptamine receptor subtypes: molecular, biochemical and physiological characterization. Trends Neurosci., 11, 496–500.PubMedCrossRefGoogle Scholar
  75. Plaznik, A., Stefanski, R., Pucilowski, O. and Kostowski, W. (1990). Effects of intra-accumbens administration of dopamine agonists on stress-induced behavioral deficit. J. Pharm. Pharmacol., 42, 79–84.PubMedCrossRefGoogle Scholar
  76. Porsolt, R. D., Anton, G., Blavet, N. and Jalfre, M. (1978). Behavioural despair in rats: a new model sensitive to antidepressant treatments. Eur. J. Pharmacol., 47, 379.PubMedCrossRefGoogle Scholar
  77. Press, D. Z., Wieland, S. and Lucki, I. (1989). Antidepressant-like effects of 5-HT1A agonists. Soci. Neurosci. Abstr., 15, 225.Google Scholar
  78. Przegalinski, E., Tatarczynska, E. and Chojnacka-Wojcik, E. (1989). Anticonflict effect of ipsapirone, buspirone and gepirone is not mediated by their common metabolite 1–2-pyrimidinylpiperazine. J. Psychopharmacol., 3, 180–5.PubMedCrossRefGoogle Scholar
  79. Rodgers, R. J. and Shepherd, J. K. (1989). Prevention of the analgesic consequences of social defeat in male mice by 5-HT1A anxiolytics, buspirone, gepirone and ipsapirone. Psychopharmacology, 99, 374–80.PubMedCrossRefGoogle Scholar
  80. Rowan, M. J., Cullen, W. K. and Moulton, B. (1990). Buspirone impairment of performance of passive avoidance and spatial learning tasks in the rat. Psychopharmacology, 100, 393–8.PubMedCrossRefGoogle Scholar
  81. Schechter, L. E., Bolanos, F. J., Gozlan, H., Laporte, A.-M., Fattaccini, C.-M. and Hamon, M. (1991). Modulations of serotonergic neurotransmission by chronic ipsapirone in the rat. This volume.Google Scholar
  82. Schefke, D. M., Fontana, D. J. and Commissaris, R. L. (1989). Anti-conflict efficacy of buspirone following acute versus chronic treatment. Psychopharmacology, 99, 427–9.PubMedCrossRefGoogle Scholar
  83. Schreiber, R. and De Vry, J. (1989). Involvement of the dorsal raphe nucleus in the discriminative stimulus properties of the 5-HT1A receptor agonist 8-OH-DPAT. Soc. Neurosci. Abstr., 15, 222.Google Scholar
  84. Schreiber, R. and De Vry, J. (1990a). Neuro-anatomical correlate of the anxiolytic effects of the 5-HT1A receptor ligands 8-OH-DPAT, ipsapirone and buspirone in the rat. Psychopharmacology, 101, S52.Google Scholar
  85. Schreiber, R. and De Vry, J. (1990b). Neuro-anatomical correlate of the antidepressant-like effects of ipsapirone and 8-OH-DPAT in the rat forced swimming test. Psychopharmacology, 101, S52.Google Scholar
  86. Schweizer, E. E., Amsterdam, J. D. and Rickeis, K. (1986). Open trial of buspirone in the treatment of major depressive disorder. Psychopharmacol. Bull., 22, 183–6.PubMedGoogle Scholar
  87. Schuurman, T., Benz, U., De Vry, J. and Traber, J. (1989). The effects of ipsapirone, buspirone, gepirone and diazepam in animal models of aggression, anxiety and depression. In Stefanis, C. N., Soldatos, C. R. and Rabavilas, A. D. (eds.), Psychiatry Today: Accomplishments and Promises, Excerpta Medica, International Congress Series, 899, 160.Google Scholar
  88. Sharp, T., Bramwell, S. R. and Grahame-Smith, D. G. (1989a). 5-HT1 agonists reduce 5-hydroxytryptamine release in rat hippocampus in vivo as determined by brain microdialysis. Br. J. Pharmacol., 96, 283–90.PubMedCentralPubMedCrossRefGoogle Scholar
  89. Sharp, T., Bramwell, S. R., Clark, D. and Grahame-Smith, D. G. (1989b). In vivo measurement of extracellular 5-hydroxytryptamine in hippocampus of the anaesthetized rat using microdialysis: changes in relation to 5-hydroxytryptaminergic neuronal activity. J. Neurochem., 53, 234–40.PubMedCrossRefGoogle Scholar
  90. Sharp, T., Bramwell, S. R., Hjorth, S. and Grahame-Smith, D. G. (1989c). Pharmacological characterization of 8-OH-DPAT-induced inhibition of rat hippocampal 5-HT release in vivo as measured by microdialysis. Br. J. Pharmacol., 98, 989–97.PubMedCentralPubMedCrossRefGoogle Scholar
  91. Sleight, A. J., Smith, R. J., Marsden, C. A. and Palfreyman, M. G. (1988). Is the hyperphagic response to 8-OH-DPAT a model for 5-HT1A receptor responsiveness? Br. J. Pharmacol., 95, 875P.Google Scholar
  92. Smith, L. M. and Peroutka, S. J. (1986). Differential effects of 5-hydroxytrypamine1A selective drugs on the 5-HT behavioral syndrome. Pharmacol. Biochem. Behav., 24, 1513–19.PubMedCrossRefGoogle Scholar
  93. Soubrié, P. (1986). Reconciling the role of central serotonin neurons in human and animal behavior. Behav. Brain Sci., 9, 319–64.CrossRefGoogle Scholar
  94. Soubrié, P. (1989). 5HT1A receptors: a bridge between anxiety and depression. In Bevan, P., Cools, A. R. and Archer, T. (eds.), Behavioural Pharmacology of 5-HT, Lawrence Erlbaum, Hillsdale, NJ, 337–52.Google Scholar
  95. Söderpalm, B., Hjorth, S. and Engel, J. A. (1988). Effects of 5-HT1A receptor agonists and L-5-HTP in Montgomery’s conflict test. Pharmacol. Biochem. Behav., 32, 259–65.CrossRefGoogle Scholar
  96. Spencer, D. G., Glaser, T. and Traber, J. (1987). Serotonin receptor subtype mediation of the interoceptive discriminative stimuli induced by 5-methoxy-N,N-dimethyltryptamine. Psychopharmacology, 93, 158–66.PubMedCrossRefGoogle Scholar
  97. Sprouse, J. S. and Aghajanian, G. K. (1988). Responses of hippocampal pyramidal cells to putative serotonin 5-HT1A and 5-HT1B agonists: a comparative study with dorsal raphe neurons. Neuropharmacology, 7, 707–15.CrossRefGoogle Scholar
  98. Tatarczynska, E. and Chojnacka-Wojcik, E. (1989). Effects of 8-OH-DPAT and ipsapirone in the tests used for evaluation of the antidepressant action. Pol. J. Pharmacol. Pharm., 41, 321–30.PubMedGoogle Scholar
  99. Tedeschi, R. E., Tedeschi, D. H., Mucha, A., Cook, L., Mattis, P. A. and Fellows, E. J. (1959). Effects of various centrally active drugs on fighting behavior in mice. J. Pharmacol. Exp. Ther., 129, 28–34.Google Scholar
  100. Traber, J. and Glaser, T. (1987). 5-HT1A receptor-related anxiolytics. Trends Pharmacol. Sci., 8, 432–7.CrossRefGoogle Scholar
  101. Traber, J., Davies, M. A., Dompert, W. U., Glaser, T., Schuurman, T. and Seidel, P.-R. (1984). Brain serotonin receptors as a target for the putative anxiolytic TVX Q 7821. Brain Res. Bull., 12, 741–4.PubMedCrossRefGoogle Scholar
  102. Tricklebank, M. D., Forler, C. and Fozard, J. R. (1985). The involvement of subtypes of the 5-HT1 receptor and of catecholaminergic systems in the behavioral response of 8-hydroxy-2-(di-n-propylamino) tetralin in the rat. Eur. J. Pharmacol., 106, 271–82.CrossRefGoogle Scholar
  103. Verge, D., Daval, G., Patey, A., Gozlan, H., El Mestikawy, S. and Hamon, M. (1985). Presynaptic 5-HT autoreceptors on serotonergic cell bodies and/or dendrites but not terminals are of the 5-HT1A subtype. Eur. J. Pharmacol., 113, 463–4.PubMedCrossRefGoogle Scholar
  104. Vogel, J. R., Beer, B. and Clody, D. E. (1971). A single reliable conflict procedure for testing anti-anxiety agents. Psychopharmacology, 21, 1–7.CrossRefGoogle Scholar
  105. Weissmann-Nanopoulos, D., Mach, E., Magre, J., Demassey, Y. and Pujol, J.-F. (1985). Evidence for the localization of 5-HT1A binding sites on serotonin containing neurons in the raphe dorsalis and raphe centralis nuclei of the rat brain. Neurochem. Int., 7, 1061–72.PubMedCrossRefGoogle Scholar
  106. Wettstein, J. G. (1988). Behavioural effects of acute and chronic buspirone. Eur. J. Pharmacol., 151, 341–4.PubMedCrossRefGoogle Scholar

Copyright information

© Macmillan Publishers Limited 1991

Authors and Affiliations

  • J. De Vry
    • 1
  • T. Glaser
  • T. Schuurman
  • R. Schreiber
  • J. Traber
  1. 1.Institute for NeurobiologyTroponwerke GmbH & Co. KGWest Germany

Personalised recommendations