Advertisement

A Constructive Approach to Economic Fluctuations

  • John J. McCall
Part of the International Economic Association book series (IEA)

Abstract

A major goal of this paper is to introduce a constructive approach to the study of economic phenomena. The highlights of this approach are its connections with the recent advances in neuroscience and the earlier research of Turing, McCulloch, Godel and Church.3 We claim that the spectacular innovations in computer-neuroscience and bio- logical-neuroscience clarify the limitations of modern economics flowing from both its static foundations and its previous neglect of the interdisciplinary foundations of utility and production theory. It is precisely these two areas of neuroscience which contain the building blocks required for constructing dynamic economic processes of tastes and production. The recent neuroscientific innovations are responsible for this potential construction. Furthermore, an interdisciplinary network among economics and the disciplines comprising artificial intelligence (AI) could enhance the AI disciplines as much as it vitalises economics. We maintain that these gains from trade can be realised only if the static and fragile von Neumann-Morgenstern edifice is replaced by flexible foundations less vulnerable to paradox and more tolerant to the faults and errors intrinsic in human decision-making.

Keywords

Markov Process Jump Process Local Martingale Contractual Relation Business Cycle Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aase, K. K. (1985) ‘R and D-Projects analysed by Semimartingale Methods’, Journal of Applied Probabilities, 22, pp. 288–99.CrossRefGoogle Scholar
  2. Abraham, R. and Marsden, J. E. (1978) Foundations of Mechanics (Reading, Massachusetts: Benjamin/Cummings).Google Scholar
  3. Abreu, D. and Rubinstein, A. (1988) ‘The Structure of Nash Equilibrium in Repeated Games with Fintie Automata’, Econometrica, 56, pp. 1259–81.CrossRefGoogle Scholar
  4. Alchian, A. A. (1984) ‘Specificity, Specialization and Coalitions’, Journal of Institutional and Theoretical Economics, 140, pp. 34—49.Google Scholar
  5. Aldous, D. J. (1982) ‘Some Inequalities for Reversible Markov Chains’, Journal of the London Mathematics Society, 25, pp. 364–76.Google Scholar
  6. Aldous, D. J. (1985) Exchangeability and Related Topics (New York: Springer-Verlag).CrossRefGoogle Scholar
  7. Amari, S. and Arbib, M. A. (eds) (1982) Competition and Cooperation in Neural Nets, (New York: Springer-Verlag).Google Scholar
  8. Anderson, P. W., Arrow, K. J. and Pines, D. (eds) (1988) The Economy as an Evolving Complex System (Wokingham: Addison-Wesley).Google Scholar
  9. Arrow, K. J. (1972) The Economic Implications of Learning by Doing’, Review of Economic Studies, 29, pp. 155–73.CrossRefGoogle Scholar
  10. Arrow, K. J. and Hahn, F. H. (1971) General Competitive Analysis (Edinburgh: Holden-Day).Google Scholar
  11. Aumann, R. J. (1976) Agreeing to Disagree’, Annual Statistics, 4.Google Scholar
  12. Aumann, R. J. (1985) ‘What is Game Theory Trying to Accomplish?’ in K. J. Arrow and S. Honkapohja (eds) Frontiers of Economics (Amsterdam: North-Holland).Google Scholar
  13. Becker, G. S. and Murphy, K. M. (1986) ‘A Theory of Rational Addiction’, Journal of Political Economy, 96, 95–9.Google Scholar
  14. Bertsekas, D. and Gallager, R. (1987) Data Networks (Englewood Cliffs, New Jersey: Prentice-Hall).Google Scholar
  15. Bicker, G. and Menzel, R. (1989) ‘Chemical Codes for the Control of Behavior in Anthropods’, Nature, pp. 337–9.Google Scholar
  16. Binmore, K. and Brandenburger, A. (1988) ‘Common Knowledge and Game Theory’, TE/88/167, London School of Economics and Political Science.Google Scholar
  17. Boorman, S. A. (1975) ‘A Combinatorial Optimization Model for Transmission of Job Information Through Contact Networks’, Bell Journal of Economics, 6, pp. 216–49.CrossRefGoogle Scholar
  18. Boyer, M. (1978) ‘A Habit-Forming Optimal Growth Model’, International Economic Review, 19, pp. 585–607.CrossRefGoogle Scholar
  19. Bremaud, P. (1981) Point Processes and Queues (New York: Springer-Verlag).CrossRefGoogle Scholar
  20. Brock, W. A., and Malliaris, A. G. (1989) Differential Equations, Stability and Chaos in Dynamic Economies (Amsterdam: North-Holland).Google Scholar
  21. Cinlar, E. and Jacod, J. (1981) ‘Representation of Semimartingale Markov Processes in Terms of Wiener Processes and Poisson Random Measures’, in Cinlar, Chung, and Getoor (eds) Seminar on Stochastic Processes, 1981 (Boston: Birkhauser).Google Scholar
  22. Cinlar, E., Jacod, J., Protter, P. and Sharpe, M. J. (1983) ‘Semimartingales and Markov Processes’, Z. Wahrscheinlichkeitstheorie verw. Gebiete 54, pp. 161–219.CrossRefGoogle Scholar
  23. Crick, F. (1989) ‘The Recent Excitement About Neural Networks’, Nature, 337, pp. 129–32.CrossRefGoogle Scholar
  24. Deno, D. C., Keller, E. L. and Crandall, W. F. (1989) ‘Dynamical Neural Network Organization of the Visual Pursuit System’, IEEE Transactions of Biomedical Engineers, 36, pp. 85–92.CrossRefGoogle Scholar
  25. Doyle, P., and Snell, J. L. (1985) Random Walks and Electric Networks, (Providence, RI: Mathematical Association of America).Google Scholar
  26. Dubins, L. E. and Savage, L. J. (1965) How To Gamble If You Must (New York: McGraw-Hill).Google Scholar
  27. Elliott, R. J. (1982) Stochastic Calculus and Applications (New York: Springer-Verlag).Google Scholar
  28. Endler, J. A. (1986) Natural Selection in the Wild (Princeton, New Jersey: Princeton University Press).Google Scholar
  29. Enke, S. (1951) ‘Equilibrium Among Spatially Separated Markets: Solution by Electric Analogue’, Econometrica, 19, pp. 40–47.CrossRefGoogle Scholar
  30. Feynman, R. (1964) The Feynman Lectures on Physics (Reading, Massachusetts: Addison-Wesley).Google Scholar
  31. Feynman, R. (1985) Q. E. D. (Princeton, New Jersey: Princeton University Press).Google Scholar
  32. Fisher, I. (1982) Mathematical Investigations in the Theory of Value and Prices (New Haven: Yale University Press).Google Scholar
  33. Fogelin, R. J. (1987) Wittgenstein (London: Routledge & Kegan Paul).Google Scholar
  34. Gerstein, G. L., Bedenbaugh, P. and Aertsen, H. I. (1989) ‘Neuronal Assemblies’, IEEE Transactions of Biomedical Engineers, 36, pp. 1–14.CrossRefGoogle Scholar
  35. Gillespie, J. H. (1989) ‘Why Not Use Diffusion Analysis in Population Genetics’, in M. W. Feldman (ed.) Mathematical Evolutionary Theory (Princeton, New Jersey: Princeton).Google Scholar
  36. Goodwin, R. M. (1951) ‘The Non-linear Accelerator and the Persistence of Business Cycles’, Econometrica, 19, pp. 1–17.CrossRefGoogle Scholar
  37. Grandmont, J. M. (1984) ‘On Endogenous Competitive Business Cycles’, Institute for Mathematical Studies in Social Sciences, no 438.Google Scholar
  38. Grossberg, S., Mingolla, E. and Todorovic, D. (1989) ‘A Neural Network Architecture for Preattentive Vision’, IEEE Transactions of Biomedical Engineers, 36, pp. 65–84.CrossRefGoogle Scholar
  39. Hammond, J. H., and Magnanti, T. L. (1987), ‘Generalized Descent Methods for Asymmetric System of Equations’, Mathematical Operational Research, 12, pp. 678–99.CrossRefGoogle Scholar
  40. Hebb, D. O. (1949) Organization of Behavior (New York: John Wiley and Sons).Google Scholar
  41. Hirshleifer, J. (1987) Economic Behavior in Adversity (Chicago: University of Chicago Press).Google Scholar
  42. Hoel, P. G., Port, S. C. and Stone, C. J. (1972) Introduction to Stochastic Processes (Boston, Massachusetts: Houghton-Mifflin).Google Scholar
  43. Holland, J. H., Holyoak, K. J., Nisbett, R. E. and Thagard, P. R. (1987) Induction (Cambridge, Massachusetts: MIT Press).Google Scholar
  44. Holmstrom, B. and Milgrom, P. (1985) ‘Aggregation and Linearity in the Provision of Intertemporal Incentives’, Report no 466, Economics Series (Stanford, California: Stanford University).Google Scholar
  45. Holyoak, K. J. (1987) ‘Review of Rumelhart, D. E. et al.\ Parallel Distributed Processing, vols. 1 and 2, Science, pp. 992–6.Google Scholar
  46. Hopenhayn, H. A. and Prescott, E. C. (1987) ‘Invariant Distributions for Monotone Markov Processes’, Federal Reserve Bank of Minnesota, Working Paper no 299.Google Scholar
  47. Hopfield J. and Tank, D. W. (1986) ‘Computing with Neural Circuits: A Model’, Science, vol. 233, pp. 625–32.CrossRefGoogle Scholar
  48. Iannaccone, L. R. (1986) ‘Addiction and Satiation’, Economic Letters, 21, pp. 95–9.CrossRefGoogle Scholar
  49. Iri, M. (1984) ‘Structural Theory for the Combinatorial Systems Characterized by Submodular Functions’, in Pulleyblank (ed.) Progress in Combinatorial Optimization (New York: Academic Press).Google Scholar
  50. Karlin, S. and Nevo, E. (eds) (1987) Evolutionary Processes and Theory (New York: Academic Press).Google Scholar
  51. Karlin, S. and Taylor, H. M. (1981) A Second Course in Stochastic Processes (New York: Academic Press).Google Scholar
  52. Kelly, F. P. (1979) Reversible and Stochastic Networks (New York: John Wiley and Sons).Google Scholar
  53. Kemeny, J. G., Snell, J. L. and Knapp, A. W. (1976) Denumerable Markov Chains (New York: Springer-Verlag).CrossRefGoogle Scholar
  54. Koob, G. F., and Bloom, F. E. (1988) ‘Cellular and Molecular Mechanisms of Drug Dependence’, Science, 242 (4 November) pp. 715–23.CrossRefGoogle Scholar
  55. Koopmans, T. C. (1949) ‘Optimum Utilization of the Transportation System’, Econometrica, 17, Supplement, pp. 136–46.CrossRefGoogle Scholar
  56. Korolyuk, V. S., Pletnev, A. I. and Eidelman, S. D. (1988) ‘Automata Walrus Games’, Russian Mathematical Surveys, vol. 43, pp. 103–47.CrossRefGoogle Scholar
  57. Langman, R. E. (1989) The Immune System (London: Academic Press, 1989).Google Scholar
  58. Leijonhufvud, A. (1988) ‘Notes on “Turbulence” in Economic Systems’, unpublished ms., University of California at Los Angeles.Google Scholar
  59. Lettvin, J. Y. Maturvana, H. R., McCulloch, W. S. and Pitts, W. H. (1959) ‘What the Frog’s Eye Tells the Frog’s Brain’, reprinted in McCulloch (1965).Google Scholar
  60. Li, S., and Basar, T. (1987) ‘Asymptotic Agreement and Convergence of Synchronous Stochastic Algorithms’, IEEE Transactions of, AC-32, pp. 612–18.Google Scholar
  61. Lippman, S. A. and McCall, J. J. (1984) ‘Ecological Decision-making and Optimal Stopping Rules’, unpublished ms. (University of California at Los Angeles).Google Scholar
  62. Llinas, R. R. (1988) ‘The Intrinsic Electrophysiological Properties of Mammalian Neurons: Insights Into Central Nervous System Function’, Science, 242 (December) pp. 1654–64.CrossRefGoogle Scholar
  63. Logue, A. W. (1988) ‘Research on Self-Control: An Integrating Framework’, Behavioural and Brain Sciences, vol. 11, pp. 665–709.CrossRefGoogle Scholar
  64. Lucas, R. E., Jr. (1981) Studies in Business Cycle Theory (Cambridge, Massachusetts: MIT Press).Google Scholar
  65. Lutz, F. and Lutz, V. (1951) The Theory of Investment of the Firm (Princeton; Princeton University Press).Google Scholar
  66. McCall, J. J. (1989) ‘The Smithian Self and Its Bayesian Brain’, University of California, Los Angeles, October.Google Scholar
  67. McCall, J. J. (1989b) ‘Exchangeability and the Structure of the Economy: A Preliminary Process Analysis’, in H. Brink (ed.) Advances in Business Cycle Theory (London: Macmillan).Google Scholar
  68. McCall, J. J. and Velupillai, K, (1989) ‘Constructive Foundations For Economics: The Emperor’s Old Clothes’, submitted to Economic Journal, November.Google Scholar
  69. McCulloch, W. S. (1965) Embodiments of Mind (Cambridge, Massachusetts: MIT Press).Google Scholar
  70. McCulloch, W. S. (1988) Embodiments of Mind (Cambridge, Massachusetts: MIT Press).Google Scholar
  71. McCulloch, W. S. and Pitts, W. (1943) ‘A Logical Calculus of the Ideas Immiment in Nervous Activity’, Bulletin of Mathematical Biophysics, 5, pp. 175–233.CrossRefGoogle Scholar
  72. Medawar, P. B. (1957) The Uniqueness of the Individual (Dover:).CrossRefGoogle Scholar
  73. Metivier, M. (1983) Weak Convergence of Sequences of Semimartingales, Tech. Report #49, Center for Stochastic Processes, University of North Carolina.Google Scholar
  74. Morehouse, N. F., Strotz, R. H. and Horwitz, S. J. (1950) ‘An Electro- Analog Method for Investigating Problems in Economic Dynamics’, Econometrica, 18, pp. 313–28.CrossRefGoogle Scholar
  75. Nicoll, R. A. (1988) ‘The Coupling of Neurotransmitter Receptors to Ion Channels in the Brain’, Science, 241, pp. 545–51.CrossRefGoogle Scholar
  76. Okun, A. M. (1981) Prices and Quantities (Washington, DC: Brookings Institution).Google Scholar
  77. Palm, G. (1982) Neural Assemblies - Studies of Brain Functions, vol. 7 (New York: Springer-Verlag).CrossRefGoogle Scholar
  78. Phelps, E. S. (1970) Microeconomic Foundations of Employment and Inflation Theory (New York: Norton).Google Scholar
  79. Pollak, R. A. (1976) ‘Habit Formation and Long-Run Utility Functions’, Journal of Economic Theory, 13, pp. 212–91.CrossRefGoogle Scholar
  80. Pollett, P. K. (1986) ‘Connecting Reversible Markov Processes’, Advances in Applied Probability 18, pp. 880–900.CrossRefGoogle Scholar
  81. Popper, K. R., and Eccles, J. C. (1977) The Self and Its Brain: An Argument for Interactionism (New York: Springer-Verlag).CrossRefGoogle Scholar
  82. Prescott, (1987).Google Scholar
  83. Rosen, S. (1985) ‘Implicit Contracts’, Journal of Economic Literature, 23, pp. 1144–75.Google Scholar
  84. Rustem, B., and Velupillai, K. (1990) ‘Rationality, Computability and Complexity’, Journal of Economic Dynamics and Control, vol. 14, pp. 419–32.CrossRefGoogle Scholar
  85. Samuelson, P. A. (1952), ‘Spatial Price Equilibrium and Linear Programming’, American Economic Review, 42, pp. 283–303.Google Scholar
  86. Sargent, T. J. (1987) ‘Some of Milton Friedman’s Scientific Contributions to Macroeconomics’, (Stanford, Calif.: Hoover Institution).Google Scholar
  87. Segall, A. (1976) ‘Stochastic Processes in Estimation Theory’, IEEE Transactions of Information Theory, 22, pp. 275–86.CrossRefGoogle Scholar
  88. Sims, C. A. (1984) ‘Martingale-Like Behavior of Prices and Interest Rates,’ Discussion Paper No. 205, Center for Economic Research, University of Minnesota.Google Scholar
  89. Smith, A. (1759) The Theory of Moral Sentiments (Liberty Classics, 1759).CrossRefGoogle Scholar
  90. Spitzer, F. (1971) ‘Markov Random Fields and Gibbs Ensembles’, American Mathematics Monthly, 78, pp. 142–54.CrossRefGoogle Scholar
  91. Stephens, D. W. and Krebs, J. R. (1986) Foraging Theory (Princeton, New Jersey: Princeton University Press).Google Scholar
  92. Stigler, G. J., and Becker, G. S. (1977)’De Gustibus non est Disputandum\ American Economic Review, 67, pp. 76–90.Google Scholar
  93. Stokey, N. L. (1988) ‘Learning by Doing and the Introduction of New Goods’, Journal of Political Economy, 96, pp. 701–17.CrossRefGoogle Scholar
  94. Strang, G. (1986) Introduction to Applied Mathematics (Cambridge, Massachusetts: Wellesley-Cambridge Press).Google Scholar
  95. Takayama, T., and Judge, G. G. (1971) Spatial and Temporal Price and Allocation Models (Amsterdam: North-Holland).Google Scholar
  96. Tank, D. W., and Hopfield, J. J. (1987) ‘Collective Computation in Neuronlike Circuits’, Scientific American, pp. 104—14.Google Scholar
  97. Tobin, R. L. (1988) ‘A Variable Dimension Solution Approach for the General Spatial Price Equilibrium Problem’, Mathematical Programming 40, pp. 33–51.CrossRefGoogle Scholar
  98. Tucker, A. W. (1950) ‘Analogues of Kirchhoffs Laws’, unpublished ms. (Stanford: Stanford University).Google Scholar
  99. Velupillai, K. (1987) ‘What Have We Learned in the Path From Godel and Turing to Artificial Intelligence’, (University of California at Los Angeles).Google Scholar
  100. Whittle, P. (1982; 1983) Optimization Over Time, vols. I and II (New York: John Wiley).Google Scholar

Copyright information

© International Economic Association 1991

Authors and Affiliations

  • John J. McCall
    • 1
  1. 1.University Of CaliforniaLos AngelesUSA

Personalised recommendations