Skip to main content

Fetal Striatal Transplants in the Ibotenate Lesioned Striatum of Adult Rats: Specific Anatomical Integration between Graft and Host

  • Chapter
Brain Repair

Part of the book series: Wenner-Gren Center International Symposium Series ((WGS))

  • 12 Accesses

Abstract

It is well established that grafts of rat fetal striatal tissue, implanted into the excitotoxically lesioned (ibotenic or kainic acid) striatum of adult rats, can ameliorate many of the lesion-induced behavioural deficits (see e.g. Deckel et al, 1983; Isacson et al, 1984, 1986; Sanberg et al, 1986; Dunnett et al, 1988). However, it is still unclear how these transplants exert their functional effects, although several different possible mechanisms have been discussed, e.g. trophic effects on the host brain, neurohumoral release of transmitters, and anatomical integration with the host (see Björklund et al, 1987, for review). In the intact animal, a large number of cortical and subcortical areas (foremost thalamus, substantia nigra, mesencephalic raphe, and amygdala) project densely to the striatum, and the striatum in turn sends its efferents to the globus pallidus, entopeduncular nucleus, and substantia nigra (for review, see Graybiel and Ragsdale, 1983). Fetal striatal tissue implanted into the excitoxically lesioned and thus neuron-depleted striatum, have been shown to develop into striatum-like structures in the lesioned host, both in terms of identified neuronal cell types and their transmitter content (McAllister et al, 1985; Isacson et al, 1985, 1987). Moreover, it has been shown that the host substantia nigra can innervate the grafts (Pritzel et al, 1986; Clarke et al, 1988), and some morphological evidence has been presented to suggest that efferent projections may extend from the implants into the host brain (Pritzel et al, 1986). The existence of projections from the graft to the host has also been suggested in neurochemical studies, i.e. by measured recoveries of GAD enzyme activity (Isacson et al, 1985) and of GABA overflow (Sirinathsinghji et al, 1988) in foremost the globus pallidus of lesioned host rats with intrastriatal implants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bayer, S.A. (1981) Neurogenesis in the rat amygdala. In The Amygdaloid-complex, INSERM Symposia no. 20. (ed. Y. Ben-Ari), pp. 19–31. Elsevier, Amsterdam.

    Google Scholar 

  • Björklund, A., Lindvall, O., Isacson, O., Brundin, P., Wictorin, K., Strecker, R.E., Clarke, D.J., and Dunnett, S.B. (1987) Mechanisms of action of intracerebral neural implants: studies on nigral and striatal grafts to the lesioned striatum. Trends in Neurosci., 10, 509–516.

    Article  Google Scholar 

  • Clarke, D.J., and Dunnett, S.B. (1989) Ultrastructural connectivity of intrastriatal striatal grafts. In Neural Transplantation, (eds. S.B. Dunnett, and S.-J. Richards). Elsevier, Amsterdam. Progr. Brain Res., in press.

    Google Scholar 

  • Clarke, D.J., Dunnett, S.B., Isacson, O., Sirinathsinghji, D.J.S., and Björklund, A. (1988) Striatal grafts in rats with unilateral neostriatal lesions. I. Ultrastructural evidence of afferent synaptic inputs from the host nigrostriatal pathway. Neuroscience, 24, 791–801.

    CAS  Google Scholar 

  • Deckel, A.W., Moran, T.H., and Robinson, R.G. (1988) Receptor characteristics and recovery of function following kainic acid lesions and fetal transplants of the striatum. II. Dopaminergic systems. Brain Res., 474, 39–47.

    PubMed  CAS  Google Scholar 

  • Deckel, A.W., Robinson, R.G., Coyle, J.T., and Sanberg, P.R. (1983) Reversal of long-term locomotor abnormalities in the kainic acid model of Huntington’s disease by day 18 fetal striatal implants. Eur. J. Pharmacol., 93, 287–288.

    Article  PubMed  CAS  Google Scholar 

  • DiFiglia, M., Schiff, L., and Deckel, A.W. (1988) Neuronal organization of fetal striatal grafts in kainate-and sham-lesioned rat caudate nucleus: Light-and electron-microscopic observations. J. Neurosci., 8, 1112–1130.

    PubMed  CAS  Google Scholar 

  • Graybiel, A.M., and Ragsdale, Jr., C.W. (1983) Biochemical anatomy of the striatum. In Chemical Neuroanatomy, (ed. P.C. Emson). Raven Press, New York.

    Google Scholar 

  • Graybiel, A.M., Liu, F.C., and Dunnett, S.B. (1989) Intrastriatal grafts derived from fetal striatal primordia. I. Phenotopy and modular organization. J. Neurosci., in press.

    Google Scholar 

  • Isacson, O., Brundin, P., Gage, F.H., and Björklund, A. (1985) Neural grafting in a rat model of Huntington’s disease. Progressive neurochemical changes after neostriatal ibotenate lesions and striatal tissue grafting. Neuroscience, 16, 799–817.

    PubMed  CAS  Google Scholar 

  • Isacson, O., Brundin, P., Kelly, P.A.T., Gage, F.H., and Björklund A. (1984) Functional neuronal replacement by grafted neurons in the ibotenic acid-lesioned striatum. Nature, 311, 458–460.

    Article  PubMed  CAS  Google Scholar 

  • Isacson, O., Dawbarn, D., Brundin, P., Gage, F.H., Emson, P.C., and Björklund, A. (1987) Neural grafting in a rat model of Huntington’s disease: striosomal-like organization of striatal grafts as revealed by immunocytochemistry and receptor autoradiography. Neuroscience, 22, 481–497.

    Article  PubMed  CAS  Google Scholar 

  • Isacson, O., Dunnett, S.B., and Björklund, A. (1986) Graft-induced behavioural recovery in an animal model of Huntington’s disease. Proc. Natl. Acad. Sci., 83: 2728–2732.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Julien, J.-P., Tretjakoff, I., Beaudet, L., and Peterson, A. (1987) Expression and assembly of a human neurofilament protein in transgenic mice provide a novel neuronal marking system. Genes and Dev., 1: 1085–1095.

    Article  PubMed  CAS  Google Scholar 

  • Lund, R.D., Chang, F.-L-, F., Hankin, M., and Lagenaur, C.F. (1985) Use of a species-specific antibody for demonstrating mouse neurons transplanted to rat brains. Neurosci. Lett., 61: 221–226.

    Article  PubMed  CAS  Google Scholar 

  • McAllister, J.P., Walker, P.D., Zemanick, M.C., Weber, A.B., Kaplan, L.I., and Reynolds, M.A. (1985) Morphology of embryonic neostriatal cell suspensions transplanted into adult neostriata. Dev. Brain Res., 23, 282–286.

    Article  Google Scholar 

  • Ouimet, C.C., Miller, P.E., Hemmings, Jr., H.C., Walaas, and Greengard, P. (1984) DARPP-32, a dopamine-and adenosine 3’:5’-monophosphate-regulated phosphoprotein enriched in dopamine-innervated brain regions, III. Immunocytochemical localization. J. Neurosci, 4, 111–124.

    PubMed  CAS  Google Scholar 

  • Pritzel, M., Isacson, O., Brundin, P., Wiklund, L., and Björklund, A. (1986) Afferent and efferent connections of striatal grafts implanted into the ibotenic acid lesioned neostriatum in adult rats. Exp. Brain Res., 65, 112–126.

    Article  PubMed  CAS  Google Scholar 

  • Sanberg, P.R., Henault, M.A., and Deckel, A.W. (1986) Effects of multiple striatal transplants in an animal model of Huntington’s disease. Pharmac. Biochem. Behav. 25, Suppl., 297–301.

    Article  CAS  Google Scholar 

  • Sirinathsinghji, D.J.S., Dunnett, S.B., Isacson, O., Clarke, D.J., Kendrick, K., and Björklund, A. (1988) Striatal grafts in rats with unilateral neostriatal lesions. II. In vivo monitoring of GABA release in globus pallidus and substantia nigra. Neuroscience, 24, 803–811.

    CAS  Google Scholar 

  • Smart, I.H.M., and Sturrock, R.R. (1979) Ontogeny of the neostriatum. In The Neostriatum, (eds. I. Divac, and R.G.E. Öberg), pp. 127–146. Pergamon Press, Oxford.

    Chapter  Google Scholar 

  • Walker, P.D., Chovanes, G.I., and McAllister II, J.P. (1987) Identification of acetylcholine-reactive neurons and neuropil in neostriatal transplants. J. Comp. Neurol., 259, 1–12.

    Article  PubMed  CAS  Google Scholar 

  • Wictorin, K, and Björklund, A. (1989) Connectivity of striatal grafts implanted into the ibotenic acid lesioned striatum. II. Cortical afferents. Neuroscience, 30, 297–312.

    CAS  Google Scholar 

  • Wictorin, K., Brundin, P., Gustavii, B., Lindvall, O., and Björklund, A. (1989a) Extensive efferent projections from grafts of fetal human striatum to the excitotoxically lesioned adult rat striatum, as revealed by a species-specific neurofilament marker. submitted.

    Google Scholar 

  • Wictorin, K., Clarke, D.J., Bolam, J.P., and Björklund, A. (1989b) Host corticostriatal fibres establish synaptic connections with grafted striatal neurons in the ibotenic acid lesioned striatum. Eur. J. Neurosci., 1(3), 189–195.

    Article  Google Scholar 

  • Wictorin, K., Isacson, O., Fischer, W., Nothias, F., Peschanski, M., and Björklund, A. (1988) Connectivity of striatal grafts implanted into the ibotenic acid lesioned striatum. I. Subcortical afferents. Neuroscience, 27, 547–562.

    PubMed  CAS  Google Scholar 

  • Wictorin, K., Ouimet, C.C., and Björklund, A. (1989c) Intrinsic organization of intrastriatal striatal transplants as revealed by DARPP-32 immunocytochemistry: specificity of connections with the lesioned host brain. Eur. J. Neurosci., in press.

    Google Scholar 

  • Wictorin, K., Simerly, R.B., Isacson, O., Swanson, L.W., and Björklund, A. (1989d) Connectivity of striatal grafts implanted into the ibotenic acid lesioned striatum. III. Efferent projecting graft neurons and their relation to host afferents within the grafts. Neuroscience, 30, 313–331.

    PubMed  CAS  Google Scholar 

  • Xu, Z.C., Wilson, C.J., and Emson, P.C. (1989) Restoration of the corticostriatal projection in rat neostriatal grafts: Electron microscopic analysis. Neuroscience, 29, 539–550.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Copyright information

© 1990 The contributors

About this chapter

Cite this chapter

Wictorin, K., Björklund, A. (1990). Fetal Striatal Transplants in the Ibotenate Lesioned Striatum of Adult Rats: Specific Anatomical Integration between Graft and Host. In: Björklund, A., Aguayo, A.J., Ottoson, D. (eds) Brain Repair. Wenner-Gren Center International Symposium Series. Palgrave, London. https://doi.org/10.1007/978-1-349-11358-3_25

Download citation

  • DOI: https://doi.org/10.1007/978-1-349-11358-3_25

  • Publisher Name: Palgrave, London

  • Print ISBN: 978-1-349-11360-6

  • Online ISBN: 978-1-349-11358-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics