Brain Repair pp 133-143 | Cite as

Reduction of Post-lesional Atrophy by Transplants of Fetal Cerebral Cortical Tissue. Host-Transplant Nerve Connections and Trophic Factors

  • J. Chr. Sørensen
  • A. J. Castro
  • E. J. Neafsey
  • J. Zimmer
Chapter
Part of the Wenner-Gren Center International Symposium Series book series (WGS)

Abstract

Fetal neocortex grafted into neocortical lesion cavities made in newborn rats has been found to ameliorate cortical lesion-induced thalamic atrophy (Haun and Cunningham 1984; Sharp and Gonzalez 1986b; Sørensen et al., 1989a). Neocortical grafts were also found to reduce the basal forebrain neuronal atrophy that occurs after excitotoxic lesions in adult rats (Sofroniew et al., 1986). This effect of neural transplants on reducing host neuronal atrophy is likely related to the formation of host-transplant nerve connections. In this report, we examine this hypothesis by reviewing recent findings on the apparent trophic effects of cortical transplants on subcortical structures. In particular, we have examined the effect of homo- and heterotopic cortical grafts placed into frontal cortical lesions made in the newborn rat. Our analysis of the relatively discrete thalamocortical projection system in this experimental paradigm is compared to the trophic effects exerted on the more diffuse cholinergic projection system by neocortical transplants placed into adult host cortical lesion cavities.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aguayo, A.J., Björklund, A., Stenevi, U. and Carlsted, T. (1984). Fetal mesencephalic neurons survive and extend long axons across peripheral nervous system grafts inserted into the adult rat striatum. Neurosci. Lett. 45, 53–58.PubMedCrossRefGoogle Scholar
  2. Benfrey, M. and Aguayo, A.J. (1982). Extensive elongation of axons from rat brain into peripheral nerve grafts. Nature 296, 150–152.CrossRefGoogle Scholar
  3. Björklund, A. and Stenevi, U. (1977). Reformation of the severed septohippocampal cholinergic pathway in the adult rat by transplanted septal neurons. Cell Tiss. Res. 185, 289–302.CrossRefGoogle Scholar
  4. Björklund, A., Gage, F.H., Schmidt, R.H., Stenevi, U. and Dunnet, S.B. (1983). Intracerebral grafting of neuronal cell suspensions. VII. Recovery of choline acetyltransferase activity and acetylcholine syntesis in the denervated hippocampus reinnervated by septal suspension implants. Acta Physiol. Scand. 522, 59–66.Google Scholar
  5. Björklund, A. and Stenevi, U. (1984). Intracerebral neural implants: Neuronal replacement and reconstruction of damaged circuitries. Ann. Rev. Neurosci. 7, 279–308.PubMedCrossRefGoogle Scholar
  6. Cajal, S. Ramón y (1928). Degeneration and Regeneration of the Nervous System Oxford University Press, London.Google Scholar
  7. Castro, A.J., Zimmer, J., Sunde, N.Aa. and Bold, E.L. (1985). Transplantation of fetal cortex to the brain of newborn rats: a retrograde fluorescent analysis of callosal and thalamic projections from transplant to host. Neurosci. Lett. 60, 283–288.PubMedCrossRefGoogle Scholar
  8. Castro, A.J., Tønder, N., Sunde, N.Aa. and Zimmer, J. (1988). Fetal neocortical transplants grafted to the cerebral cortex of newborn rats receive afférents from the basal forebrain, locus coeruleus and midline raphe. Exp. Brain Res. 69, 613–622.PubMedCrossRefGoogle Scholar
  9. Castro, A.J., Sørensen, J.C., Tønder, N., Bold, L. and Zimmer, J. (1989). Fetal neocortical transplants grafted into cortical lesion cavities made in newborn rats receive multible host afferents. A retrograde fluorescent tracer analysis. Restor. Neurol. Neurosci. in press.Google Scholar
  10. Chang, F.F., Steedman, J.G. and Lund, R.D. (1984). Embryonic cerebral cortex placed in the occipital region of newborn rats makes connections with the host brain. Dev. Brain Res. 13, 164–166.CrossRefGoogle Scholar
  11. Chang, F.F., Steedman, J.D. and Lund, R.D. (1986). The lamination and connectivity of embryonic cerebral cortex transplanted into newborn rat cortex. J. Comp. Neurol. 224, 401–411.CrossRefGoogle Scholar
  12. Cotman, C.W., Nieto-Sampedro, M. and Whittemore, S.R. (1985). Relationships between neurotropic factors and transplant-host integration. In: Neural Grafting in the Mammalian CNS (eds. A. Björklund and U. Stenevi), Elsevier Amsterdam, pp. 169–178.Google Scholar
  13. David, S. and Aguayo, A.J. (1981). Axonal elongation into peripheral nervous system “bridges” after central nervous system injury in adult rats. Science 214, 931–933.PubMedCrossRefGoogle Scholar
  14. David, S. and Aguayo, A.J. (1985). Axonal regeneration after crush injury of rat central nervous system fibers innervating peripheral nerve grafts. J. Neurocytol. 14, 1–12.PubMedCrossRefGoogle Scholar
  15. Floeter, M.K. and Jones, E.G. (1984). Connections made by transplants to the cerebral cortex of rat brains damaged in utero. J. Neurosci. 4, 141–150.PubMedGoogle Scholar
  16. Gonzalez, M.F. and Sharp, F.R. (1987). Fetal frontal cortex transplanted to injured motor/sensory cortex of adult rats. I. NADPH-diaphorase neurons. J. Neurosci. 7, 2991–3001.PubMedGoogle Scholar
  17. Gonzalez, M.F., Sharp, F.R. and Loken, J.E. (1988). Fetal frontal cortex transplanted to injured motor/sensory cortex of adult rats: reciprocal connections with host thalamus demonstrated with WGA-HRP. Exp. Neurol. 99, 154–165.PubMedCrossRefGoogle Scholar
  18. Haun, F. and Cunningham, T.J. (1984). Cortical transplants reveal CNS trophic interactions in situ. Dev. Brain Res. 15, 290–294.CrossRefGoogle Scholar
  19. Jaeger, C.B. and Lund, R.D. (1980). Transplantation of embryonic occipital cortex to the tectal region of newborn rats: A light microscopic study of organisation and connectivity of the transplants. J. Comp. Neurol. 194, 571–594.PubMedCrossRefGoogle Scholar
  20. Neafsey, E.J., Sørensen, J.C., Tønder, N. and Castro, A.J. (1989a). Fetal cortical transplants into neonatal rats respond to thalamic and peripheral stimulation in the adult. An electrophysiological study of single-unit activity, Brain Res. In Press.Google Scholar
  21. Neafsey, E.J., Hogan, T.P., Shaw, P.L. and Castro, A.J. (1989b). Occipital cortical transplants placed in the sensorimotor cortex of newborn rats. An electrophysiological study. Eur. J. Neurosci. Suppl. 1, 41.10.Google Scholar
  22. Krüger, S., Sievers, J., Hansen, C., Sadler, M. and Berry M. (1986). Three morphologically distinct types of interface develop between adult host and fetal brain transplants: Implications, for scar formation in the adult central nervous system. J. Comp. Neurol. 249, 103–116.PubMedCrossRefGoogle Scholar
  23. Pearson, R.C.A., Sofroniew, M.V. and Powell, T.P.S. (1983). Retrograde cell degeneration in the basal nucleus in monkey and man. Brain Res. 261, 321–326.PubMedCrossRefGoogle Scholar
  24. Raisman, G. What hope for repair of the brain? (1978). Ann. of Neurol. 3, 101–106.CrossRefGoogle Scholar
  25. Seiler, M. and Schwab, M. (1984). Specific retrograde transport of nerve growth factor (NGF) from neocortex to nucleus basalis in the rat. Brain Res. 300, 33–39.PubMedCrossRefGoogle Scholar
  26. Sharp, F.R. and Gonzalez, M.F. (1986a). Adult rat motor cortex connections to thalamus following neonatal and juvenile frontal cortical lesions: WGA-HRP and amino acid studies. Devel. Brain Res. 30, 169–187CrossRefGoogle Scholar
  27. Sharp, F.R. and Gonzalez, M.F. (1986b). Fetal cortical transplants ameliorate thalamic atrophy ipsilateral to neonatal frontal cortex lesions. Neurosci. Lett. 71, 247–251.PubMedCrossRefGoogle Scholar
  28. Sharp, F.R., Gonzalez, M.F. and Sagar, S.M. (1987). Fetal frontal cortex transplanted to injured motor/sensory cortex of adult rats. II. VIP-, somatostatin-, and NPY-immunoreactive neurons. J. Neurosci. 7, 3002–3015.PubMedGoogle Scholar
  29. Sofroniew, M.V., Pearson, R.C.A., Eckerstein, F., Cuello, A.C. and Powell T.P.S. (1983). Retrograde changes in cholinergic neurons in the basal forebrain of the rat following cortical damage. Brain Res. 289, 370–374.PubMedCrossRefGoogle Scholar
  30. Sofroniew, M.V. and Pearson R.C.A. (1985). Degeneration of cholinergic neurons in the basal nucleus following kainic or N-methyl-D-aspartate acid applications to the cerebral cortex in the rat. Brain Res. 339, 186–190.PubMedCrossRefGoogle Scholar
  31. Sofroniew, M.V., Isacson, O. and Björklund, A. (1986). Cortical grafts prevent atrophy of cholinergic basal forebrain nucleus neurons induced by excitotoxic cortical damage. Brain Res. 378, 409–415.PubMedCrossRefGoogle Scholar
  32. Sofroniew, M.V., Pearson, R.C.A. and Powell T.P.S. (1987). The cholinergic nuclei of the basal forebrain of the rat: normal structure development and experimentally induced degeneration. Brain Res 441, 310–331.CrossRefGoogle Scholar
  33. Stanfield, B.B. and O’Leary D.M. (1985). Fetal occipital cortical neurons transplanted to the rostral cortex can extend and maintain a pyramidal axon. Nature 313, 135–137.PubMedCrossRefGoogle Scholar
  34. Sunde, N.Aa. and Zimmer, J. (1983). Cellular histochemical and connective organisation of the hippocampus and fascia dentata transplanted to different regions of immature and adult rat brains. Dev. Brain Res. 8, 165–191.CrossRefGoogle Scholar
  35. Sørensen, J.Chr., Zimmer, J. and Castro, A.J. (1989a). Fetal cortical transplants reduce the thalamic artophy induced by-frontal cortical lesions in newborn rats. Neurosci. Lett. 98, 33–38.PubMedCrossRefGoogle Scholar
  36. Sørensen, J.C., Klausen, B., Erlich, E., Zimmer, J. and Castro, A.J. (1989b). Thalamic atrophy induced by frontal cortical lesions in newborn rats is not reduced by occipital cortical or hippocampal tissue transplants. Eur. J. Neurosci. Suppl. 1, 41.9.Google Scholar
  37. Whitehouse, P.J., Price, D.L., Clark, A.W., Coyle, J.T. and Delong, M.R. (1981). Alzheimer disease: evidence for selective loss of cholinergic neurons in the nucleus basalis. Ann. Neurol. 10, 121–126.CrossRefGoogle Scholar
  38. Whitehouse, P.J., Price, D.L., Struble, R.G., Clark, A.W., Coyle, J.T. and Delong, M.R. (1982). Alzheimer’s disease and senile dementia. Loss of neurons in the basal forebrain. Science 215, 1237–1239.PubMedGoogle Scholar
  39. Zimmer, J., Laurberg, S. and Sunde, N. (1986). Non-cholinergic afférents determine the distribution of the cholinergic septohippocampal projection: a study of the AChE staining pattern in the rat fascia dentata and hippocampus after lesions, X-irradiation, and intracerebral grafting. Exp. Brain Res. 64, 158–168.PubMedCrossRefGoogle Scholar
  40. Zimmer, J., Tønder, N. and Sørensen T. (1989). Hippocampus and fascia dentata transplants: anatomical organisation and connections. In: The Hippocampus. New Vistas (eds. V. Chan-Palay and C. Köhler), Alan Liss Inc. N.Y.Google Scholar

Copyright information

© The contributors 1990

Authors and Affiliations

  • J. Chr. Sørensen
  • A. J. Castro
  • E. J. Neafsey
  • J. Zimmer

There are no affiliations available

Personalised recommendations