Advertisement

B-Cell Hybridoma Production by Avidin-Biotin Mediated Electrofusion

  • Mary K. Conrad
  • Mathew M. S. Lo

Abstract

Kohler and Milstein’s method for the production of cell lines secreting specific antibodies directed to an antigen of interest has provided major advancements in the biomedical sciences and is widely used. The method is based on the random fusion of two cell types in the presence of polyethyleneglycol (PEG),1,2 although viruses were used in earlier experiments.3 Antibodies to a wide variety of antigens have been reported. Spleen cells from hyperimmunized mice are fused to azaguanine-resistant myeloma cells (which lack the enzyme hypoxanthine guanine ribosyltransferase, and therefore die in the presence of aminopterin). Hybrids are selected in a medium containing aminopterin supplemented with hypoxanthine and thymidine (HAT). Unfused myeloma cells are killed by the aminopterin, and unfused spleen cells die off after about 1 to 2 weeks in culture. These and all chemically induced fusions are random and may produce several hundred hybrid colonies, which have to be screened for the secretion of the desired antibodies. Usually several experiments have to be performed to obtain monoclonal antibodies of the required specificity and antigen binding affinity.

Keywords

Spleen Cell Myeloma Cell Cell Fusion Keyhole Limpet Hemocyanin Fluorescent Microsphere 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Galfre, G., Howe, S. C., Milstein, C., Butcher, G. W., and Howard, J. C. 1977. Antibodies to major histocompatibility antigens produced by hybrid cell lines. Nature 266:550–552.CrossRefGoogle Scholar
  2. 2.
    Galfre, G., and Milstein, C. 1981. Production of monoclonal antibodies: Strategies and procedures. Methods Enzymol. 73:3–46.CrossRefGoogle Scholar
  3. 3.
    Kohler, G., and Milstein, C. 1975. Continuous cultures of fused cells secreting antibody of predefined specificity. Nature 256:495–497.CrossRefGoogle Scholar
  4. 4.
    Neumann, E., Gerisch, G., and Opatz, K. 1980. Cell fusion by high electric impulses applied to dictyostelium-discoideum. Naturwissenschaften 67:414–415.CrossRefGoogle Scholar
  5. 5.
    Tsong, T. Y. 1983. Voltage modulation of membrane permeability and energy utilization in cells. Biosci. Rep. 3:487–505.CrossRefGoogle Scholar
  6. 6.
    Zimmermann, U., Vienken, J., Halfmann, J., and Emeis, C. C. 1985. Electrofusion: A novel hybridization process. Adv. Biotech. Processes 4:79–150.Google Scholar
  7. 7.
    Karsten, U., Papsdorf, G., Roloff, G., Stolley, P., Abel, H., Walther, I., and Weiss, H. 1985. Monoclonal anti-cytokeratin antibody from a hybridoma clone generated by electrofusion. Eur. J. Cancer Clin. Oncol. 21:733–740.CrossRefGoogle Scholar
  8. 8.
    Sowers, A. E. 1986. A long-lived fusogenic state is induced in erythrocyte ghosts by electric pulses. J. Cell Biol. 102:1358–1362.CrossRefGoogle Scholar
  9. 9.
    Pohl, H. A. Dielectrophoresis, Cambridge University Press, Cambridge, 1978.Google Scholar
  10. 10.
    Vienken, J., and Zimmermann, U. 1982. Electric field-induced fusion: Electro-hydraulic procedure for production of heterokaryon cells in high yield. FEBS Lett. 137:11–13.CrossRefGoogle Scholar
  11. 11.
    Bischoff, R., Eisert, R. M., Schedel, I., Vienken, J., and Zimmermann, U. 1982. Human hybridoma cells produced by electrofusion. FEBS Lett. 147:64–68.CrossRefGoogle Scholar
  12. 12.
    Conrad, M. K., Lo, M. M. S., Tsong, T. Y., and Snyder, S. H. In Cell Fusion, A. Sowers, ed., Plenum Press, New York, 1987.Google Scholar
  13. 13.
    Golub, E. B. 1987. Somatic mutation: Diversity in regulation of the immune repertoire. Cell 48:723–724.CrossRefGoogle Scholar
  14. 14.
    Bankert, R. B., DesSoye, D., and Power, L. 1980. Antigen-promoted cell fusion: Antigen-coated myeloma cells fused with antigen-reactive spleen cells, Transplant. Proc. 12:443–448.Google Scholar
  15. 15.
    Green, N. M. 1975. Avidin. Adv. Protein Chem. 29:85–133.CrossRefGoogle Scholar
  16. 16.
    Godfrey, W., Doe, B., Wallace, E. F., Bredt, B., and Wofsy, L. 1981. Affinity targeting of membrane vesicles to cell surface. Exp. Cell Res. 135:137–145.CrossRefGoogle Scholar
  17. 17.
    Wormmeester, J., Stiekema, F., and Groot, K. D. 1984. A simple method for immunoselective cell separation with avidin-biotin system. J. Immunol. Method 67:389–394.CrossRefGoogle Scholar
  18. 18.
    Lo, M. M. S., Tsong, Y. T., Conrad, M. K., Strittmatter, S. M., Hester, L. H., and Snyder, S. H. 1984. Monoclonal antibody production by receptor-mediated electrically induced cell fusion. Nature 310:792–794.CrossRefGoogle Scholar
  19. Tijssen, P. Practice and Theory of Enzyme Immunoassays, Vol. 26. Elsevier, New York, 1985Google Scholar
  20. 20.
    Goodfriend, T. L., Levine, L., and Fasman, G. D. 1964. Antibodies to bradykinin and angiotensin: A use of carbodimides in immunology. Science 144:1344–1346.CrossRefGoogle Scholar
  21. 21.
    Tager, H. S. 1976. Coupling of peptides to albumin with difluorodinitrobenzane. Analyt. Biochem. 71:367–375.Google Scholar
  22. 22.
    Golds, E. E., and Braun, P. E. 1978. Protein association in basic protein conformation in the myelin membrane: The use of difluorodinitrobenzene as a cross-linking reagent. J. Biol. Chem. 253:8162–8170.Google Scholar
  23. 23.
    Cuatrecasas, P., and Parikh, I. 1972. Adsorbents for affinity chromatography. Use of N-hydroxysuccinimide esters of agarose. Biochem. 11:2291–2299.Google Scholar
  24. 24.
    Orr, G. A. 1981. The use of the 2-iminobiotin-avidin interaction for the selective retrieval of labeled plasma membrane components. J. Biol. Chem. 256:761–766.Google Scholar
  25. 25.
    Lui, F. T., Finnecker, M., Hamaoka, T., and Katz, D. 1979. New procedures for preparation and isolation of conjugates of proteins and a synthetic copolymer of D-amino acids and immunochemical characterization of such polymer. Biochemistry 18:690–697.CrossRefGoogle Scholar
  26. 26.
    Youle, R. J., and Neville, D. M., Jr. 1980. Anti-Thy 1.2 monoclonal antibody linked to ricin is a potent cell-type-specific toxin. Proc. Natl. Acad. Sci. USA 77:5483–5486.CrossRefGoogle Scholar
  27. 27.
    Mishell, B. B., and Shiigi, S. M. Selected Methods in Cellular Immunology, Freeman, San Francisco, 1980.Google Scholar
  28. 28.
    Mirro, J. Jr., Schwartz, J. F., and Civin, C. I. 1981. Simultaneous analysis of cell surface antigens and cell morphology using monoclonal antibodies conjugated to fluorescent microspheres. J. Immunol. Method 47:39–48.CrossRefGoogle Scholar
  29. 29.
    Khaw, B. A., Scott, J., Fallon, J. T., Cahil, S. L., Haber, E., and Homey, C. 1982. Myocardial injury: quantitation by cell sorting initiated with antimyosin fluorescent spheres. Science 217:1050–1053.CrossRefGoogle Scholar
  30. 30.
    Civin, C. L., and Banquerigo, M. L. 1983. Rapid, efficient cloning of murine hybridoma cells in low gelation temperature agarose. J. Immunol. Meth. 61:1–8.CrossRefGoogle Scholar
  31. 31.
    Vienken, J., and Zimmermann, U. 1985. An improved electrofusion technique for production of mouse hybridoma cells. FEBS Lett. 182:278–280.CrossRefGoogle Scholar
  32. 32.
    Wojchowski, D. M., and Sytkowski, A. J. 1986. Hybridoma production by simplified avidin-mediated electrofusion. J. Immunol. Method 90:173–197.CrossRefGoogle Scholar

Copyright information

© Palgrave Macmillan, a division of Macmillan Publishers Limited 1989

Authors and Affiliations

  • Mary K. Conrad
  • Mathew M. S. Lo

There are no affiliations available

Personalised recommendations