Light scattering immunoassay

  • Christopher Price
  • David Newman

Abstract

Monitoring of the antigen:antibody reaction by measurement of light scattering has been known for the past 50 years (1), although the broader concept of agglutination had been explored in the 1920’s (2), for microbiological assays. As an understanding of light scattering theory and the nature of antigens and antibodies evolved, a whole range of developments began to unfold. These can broadly be considered to reflect improvements in antibody production, increasing sophistication of instrumentation, better knowledge of the reaction between antigen and antibody and immunoaggregate formation, and more recently the use of particle labels to enhance light scattering. Although we might now see a particle enhanced immunoassay as a modern development of light scattering immunoassay technology, some of the earliest documented immunoassays involved the use of antibodies coupled to particles (3,4).

Keywords

Surfactant Dust Albumin Cortisol Lysine 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Libby, R.L. (1938) A new and rapid quantitative technique for the determination of potency of types I and II antipneumococcal serum. J. Immunol. 34, 269–79.Google Scholar
  2. 2.
    Freund, J. (1925) Agglutination of tubercle bacilli. Am. Rev. Tbc. 12, 124–41.Google Scholar
  3. 3.
    Gaechtgens W. (1906) Beitrag zur Agglutinationstechnik. München med.Wchnschr. 53, 135–1.Google Scholar
  4. 4.
    Loeb, J. (1922–23) The influence of electrolytes on the cataphoretic charge of colloidal particles and the stability of their suspensions. I. Experiments with collodion particles. J. Gen. Physiol. 5, 109–26.PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Tyndall, J. (1854) On some phenomena connected with the motion of liquids. Proc. Roy. Inst. 1, 446–8.Google Scholar
  6. 6.
    Strutt, J.W. Rt. Hon. (Lord Rayleigh) (1871) On the light from the sky, its polarization and colour. Phil. Mag. 41, 107–20.Google Scholar
  7. 7.
    Strutt, J.W. Rt. Hon. (Lord Rayleigh) (1871) On the scattering of light by small particles. Phil. Mag. 41, 447–54.Google Scholar
  8. 8.
    Debye, P. (1915) Zerstreung Von Rontgerstrahen. Ann. Physik. 46, 809–23.CrossRefGoogle Scholar
  9. 9.
    Mie, G. (1908) Beiträge zur Optik trüber Medien, Speziell kolloidaler Metallosungen. Ann. Physik. 25, 377–44.CrossRefGoogle Scholar
  10. 10.
    Tanford, C. (1961) Light scattering in Physical Chemistry of Macromolecules. pp 275, John Wiley & Sons, New York.Google Scholar
  11. 11.
    Van Holde, K.E. (1971) Scattering in Physical Biochemistry. Vol. 9.pp. 250, Prentice-Hall, Englewood Cliffs, New Jersey.Google Scholar
  12. 12.
    Mayer-Arendt, J.R. (1989) Introduction to classical and modern optics. 3rd Edn.pp 452, Prentice Hall, Englewood Cliffs, New Jersey.Google Scholar
  13. 13.
    Najjar, V.A. (1963) Some aspects of antibody-antigen reactions and theoretical considerations of the immunologic response. Physiol. Rev. 43, 243–62.PubMedGoogle Scholar
  14. 14.
    Heidelberger, M., Kendall, F.W. (1935) Quantitative theory of the precipitin reaction; study of azoprotein-antibody system. J. Exp. Med. 62, 467–83.PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Marrack, J.R., Richards, C.B. (1971) Light scattering studies of the formation of aggregates in mixtures of antigen and antibody. Immunol. 20, 1019–40.Google Scholar
  16. 16.
    Anderson, R.J., Sternberg, J.C. (1978) A rate nephelometer for immunoprecipitin measurement of specific serum proteins. In: Automated Immunoanalysis. (ed Ritchie, R.F.) 2, 410–69, Marcel Dekker, New York.Google Scholar
  17. 17.
    Tengerdy, R.P.O. (1967) Reaction kinetic studies of the antigen-antibody reaction. J. Immunol. 99, 126–32.PubMedGoogle Scholar
  18. 18.
    Price, C.P., Spencer, K., Whicher, J. (1983) Light scattering immunoassay of specific proteins: a review. Ann. Clin. Biochem. 20, 1–14.PubMedCrossRefGoogle Scholar
  19. 19.
    Anthony, F., Spencer, K., Mason, P., et al. (1980) The variable influence of an a component in pregnancy plasma on four different assay systems for the measurement of pregnancy-specific ßi glycoprotein. Clin. Chim. Acta. 105, 287–95.PubMedCrossRefGoogle Scholar
  20. 20.
    Price, C.P., Spencer, K. (1981) Kinetic immunoturbidimetry of human choriomammotropin in serum. Clin. Chem. 27, 882–7.PubMedGoogle Scholar
  21. 21.
    Killingsworth, L.M. and Savory, J. (1973) Nephelometric studies of the precipitin reaction: a model system for specific protein measurements. Clin. Chem. 19, 403–7.PubMedGoogle Scholar
  22. 22.
    Medcalf, E.A., Newman, D.J., Gilboa, A. et al. (1987) A rapid and robust particle-enhanced turbidimetric immunoassay for serum 132 microglobulin. J. Immunol. Meth. 129, 97–103.CrossRefGoogle Scholar
  23. 23.
    Price, C.P. and Spencer, K. (1980) The measurement of specific proteins by kinetic immunoturbidimetry. UV Spectro. Group Bull. 8, 29–37.Google Scholar
  24. 24.
    Hellsing, K. (1978) Enhancing effects of non-ionic polymers on immunochemical reactions. In: Automated Imunoanalysis. (ed Ritchie, R.F. ) 1, 67–112, Marcel Dekker, New York.Google Scholar
  25. 25.
    Hellsing, K. and Enstrom, H. (1977) Pre-treatment of serum samples for immunonephelometric analysis by precipitation with polyethylene glycol. Scand. J. Clin. Lab. Invest. 35, 529–36.CrossRefGoogle Scholar
  26. 26.
    Whicher, J.T. and Blow, C. (1980) Formulation of optimal conditions for an immunonephelometric assay. Ann. Clin. Biochem. 17, 170–7.PubMedCrossRefGoogle Scholar
  27. 27.
    Boyden, S.V. (1951) The adsorption of proteins on erythrocytes treated with tannic acid and subsequent haemagglutination by antiprotein sera. J. Exp. Med. 93, 107–20.PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Singer, J.M. and Plotz, C.M. (1956) The latex fixation test I. application to the serologic diagnosis of rheumatoid arthritis. Am. J. Med. 21, 888–92.PubMedCrossRefGoogle Scholar
  29. 29.
    Hechemy, K., Stevens, R.W., Gaafar, H.A. (1976) Antigen distribution in a latex suspension and its relationship to test sensitivity. J. Clin. Microbiol. 4, 82–6.PubMedPubMedCentralGoogle Scholar
  30. 30.
    Nusbacher, J., Berkman, E.M., Wong, K.Y., et al. (1972) Assay of IgG and other human plasma proteins by quantitative inhibition of passive hemagglutination. J. Immunol. 108, 893–902.PubMedGoogle Scholar
  31. 31.
    Lamont-Havers, R.W. (1955) Nature of serum factor causing agglutination of sensitised sheep cells and Group A hemolytic streptococci. Proc. Soc. Exp. Bio. Med. 88, 20–35.CrossRefGoogle Scholar
  32. 32.
    Maclin, E., Rohlfing, D., Ansour, M. (1973) Relationship between variables in instrument performance and results of kinetic enzyme assays–a system approach. Clin. Chem. 19, 832–7.PubMedGoogle Scholar
  33. 33.
    Kusnetz, J. and Mansberg, H.P. (1978) Optical considerations: nephelometry. In: Automated Immunoanalysis. (ed Ritchie R.F. ) 1, p 1–43, Marcel Dekker, New York.Google Scholar
  34. 34.
    Masson, P.L., Cambiaso, C.L., Collet-Cassert, D. et al. (1981) Particle counting immunoassay (PACIA) Meth. Enzymol. 74, 106–39.PubMedCrossRefGoogle Scholar
  35. 35.
    Wilkins, T.A., Brouwers, G., Mareschall, J. C. et al. (1988) Immunoassay by particle counting. In: Complementary Immunoassays. (ed Collins W.P. ) p 227–40, John Wiley and Sons, Chichester.Google Scholar
  36. 36.
    Wilkins, T.A., Brouwers, G., Mareschall, J.C. (1988) High sensitivity, homogeneous particle based immunoassay for thryrotropin (Multipart TM) Clin. Chem. 34, 1749–52Google Scholar
  37. 37.
    Bloomfield, V.A. (1985) Biological applications. In Dynamic light scattering. Applications of photon correlation spectroscopy. p 363–416, Plenum Press, New York.Google Scholar
  38. 38.
    Von Schulthess, G.K., Cohen, R.J., Benedek, G.B. (1976) Laser light scattering immunoassay in the agglutination -inhibition mode for human chorionic gonadotropin (hCG) and human luteinising hormone (hLH) Immunochemistry. 13, 963–6.CrossRefGoogle Scholar
  39. 39.
    Von Schulthess, G.K., Cohen, R.J., Sakato, N., Benedek, G.B. (1976) Laser light scattering spectroscopic immunoassay for mouse IgA. Immunochemistry. 13, 955–62.CrossRefGoogle Scholar
  40. 40.
    Liedberg, B., Nylander, C., Lindstrom, I. (1983) Surface plasmon resonance for gas detection and biosensing. Sensors Actuators. 4, 299–304.CrossRefGoogle Scholar
  41. 41.
    Mayo, C.S., Hallock, R.B. (1989) Immunoassay based on surface plasmon oscillation. J. Immunol. Meth. 120, 105–14.CrossRefGoogle Scholar
  42. 42.
    Whicher, J.T., Price, C.P., Spencer, K. (1982) Immunonephelometric and immunoturbidimetric assays for proteins. CRC Crit. Rev. Clin. Lab. Sci. 18, 213–60.CrossRefGoogle Scholar
  43. 43.
    Buffone, G.J., Savory, J., Hermans, J. (1975) Evaluation of kinetic light scattering as an approach to the measurement of specific proteins with the centrifugal fast analyser. Theoretical considerations. Clin. Chem. 21, 1735–46.PubMedGoogle Scholar
  44. 44.
    Deverill, I., Lock, R.J. (1983) Kinetics of the antigen: antibody reaction. Ann. Clin. Biochem. 20, 224–6.PubMedCrossRefGoogle Scholar
  45. 45.
    Pardue, H.L., Hewitt, T.E., Milano, M.J. (1974) Photometric errors in equilibrium and kinetic analyses based on absorption spectroscopy. Clin. Chem. 20, 1028–42.PubMedGoogle Scholar
  46. 46.
    Muller-Matthesius, R. and Opper, C. (1980) Influence of measurement time and reaction medium on kinetic immunoturbidimetric protein determination. J. Clin. Chem. Clin. Biochem. 18, 501–8.PubMedGoogle Scholar
  47. 47.
    Ritchie, R.F. (1978) Automated precipitin analysis. In: Automated Immunoanalysis. (ed Ritchie R. F.) 1 p 45–66, Marcel Dekker, New York.Google Scholar
  48. 48.
    Deverill, I. (1980) Kinetic measurement of the immunoprecipitin reaction using the centrifugal analyser. In: Centrifugal Analysers in Clinical Chemistry. (eds. Price, C.P., Spencer, K. ) p 109–24, Praeger, Eastbourne.Google Scholar
  49. 49.
    Spencer, K. and Price, C.P. (1979) Kinetic immunoturbidimetry: the measurement of serum albumin. Clin. Chim. Acta. 95, 263–76.PubMedCrossRefGoogle Scholar
  50. 50.
    Van Munster, P.J.J., Hoelen, G.E.J.M., Samwell-Mantingh, M., Holtman-Van Meuros, M.A. (1977) A turbidimetric immunoassay (TIA) with automated individual blank compensation. Clin. Chim. Acta. 76, 377–88.PubMedCrossRefGoogle Scholar
  51. 51.
    Hills, L.P. and Tiffany, T.O. (1980) Comparison of turbidimetric and light scattering measurements of immunoglobulins by use of a centrifugal analyser with absorbance and fluorescence/light scattering optics. Clin. Chem. 26, 1459–66.PubMedGoogle Scholar
  52. 52.
    Renoe, B.W., Savory, J., Buffone, G.J., Cross, R.E. (1980) Laser nephelometry and the measurement of specific proteins. In Centrifugal Analysers in Clinical Chemistry. (eds. Price, CP., Spencer, K.) p 395–409, Praeger, Eastbourne.Google Scholar
  53. 53.
    Whicher, J.T., Calvin, J., Riches, P., et al. (1987) The laboratory investigation of paraproteinaemia. Ann. Clin. Biochem. 24, 119–32.PubMedCrossRefGoogle Scholar
  54. 54.
    Whicher, J.T., Perry, D.E., Hobbs J.R. (1978) An evaluation of the Hyland laser nephelometer PDQ ® system for the measurement of immunoglobulins. Ann. Clin. Biochem. 15, 77–85.PubMedCrossRefGoogle Scholar
  55. 55.
    Galvin, J.P., Looney, C.E., Leflar, C.E., et al. (1983) Particle enhanced immunoassay systems. In: Clinical Laboratory Assays; New Technology and Future Directions. (eds. Nakamura, R.M., Ditto, W.R., Tucker, E.S.) p 73–95, Masson Publishing, New York.Google Scholar
  56. 56.
    Buffone, G.J., Savory, J., Cross R.E., Hammond, J.E. (1975) Evaluation of light scattering as an approach to the measurement of specific proteins with the centrifugal analyzer. I. Methodology. Clin. Chem. 21, 1731–4.PubMedGoogle Scholar
  57. 57.
    Larsson, K. (1990) High- and low- affinity antibodies–some observations in relation to polyethylene glycol concentrations in immunoturbidimetric assays. Scand. J. Clin. Lab. Invest. 50, 217–20.PubMedCrossRefGoogle Scholar
  58. 58.
    Chambers, R.E., Whicher, J.T., Perry, D.E., et al. (1987) Over estimation of immunoglobulins in the presence of rheumatoid factor by kinetic immunonephelometry and rapid immunoturbidimetry. Ann. Clin. Biochem. 24, 520–4.PubMedCrossRefGoogle Scholar
  59. 59.
    Deverill, I. and Reeves, W.G. (1980) Light scattering and absorption–developments in immunology. J. Immunol. Meth. 38, 191–204.CrossRefGoogle Scholar
  60. 60.
    Ervin, P.E., Jansson, N.O., Bergdahl, A. (1986) A turbidimetric immunochemical method for determination of serum β2microglobulin using a centrifugal analyser. Clin. Chim. Acta. 155, 151–6.CrossRefGoogle Scholar
  61. 61.
    Wood, P.J., Cockett, D., Mason, P. (1978) A rapid and inexpensive laser nephelometric assay for plasma pregnancy specific β 1- glycoprotein levels. Clin. Chim. Acta. 90, 87–91.PubMedCrossRefGoogle Scholar
  62. 62.
    Kallner, A. (1977) Removal of background interference in nephelometric determination of serum proteins. Clin. Chim. Acta. 80, 293–7.PubMedCrossRefGoogle Scholar
  63. 63.
    Van Lenti, F., Marchand, A., Galen, R.S. (1979) Evaluation of a nephelometric assay for haptoglobin and its clinical usefulness. Clin. Chem. 25, 2007–10.Google Scholar
  64. 64.
    Chambers, R.E., Whicher, J.T., Bullock, D.G. (1984) External quality assessment of immunoassays for specific proteins in serum: 18 months’ experience in the United Kingdom. Ann. Clin. Biochem. 21, 246–53.PubMedCrossRefGoogle Scholar
  65. 65.
    Bullock, D.G., Dumont, G., Vassault, A. (1990) Immunochemical asays of serum proteins: a European external quality assessment survey and the effects of calibration procedures on interlaboratory agreement. Clin. Chim. Acta. 187, 21–36.PubMedCrossRefGoogle Scholar
  66. 66.
    Chambers, R.E., Bullock, E.G., Whicher, J.T. (1987) Improved between laboratory agreement for specific protein assays in serum following introduction of a common reference preparation (SPS-01) demonstrated in an external quality assessment scheme. Clin. Chim. Acta. 164, 189–200.PubMedCrossRefGoogle Scholar
  67. 67.
    Reimer, C.B. and Maddison, S.E. (1976) Standardisation of human immunoglobulin quantitation: a review of current status and problems. Clin. Chem. 22, 577–82.PubMedGoogle Scholar
  68. 68.
    Coombs, R.R.A., Scott, M.L., Cranage, M.P. (1987) Assays using red cell-labelled antibodies. J. Immunol. Meth. 101, 1–14.CrossRefGoogle Scholar
  69. 69.
    Cais, M. (1983) Metalloimmunoassay: principles and practice. Meth. Enzymol. 92, 445–58.PubMedCrossRefGoogle Scholar
  70. 70.
    Leuvering, J.W.H., Thal, P.H.J.M., van der Waart, M., Schuurs, A.H.W.M. (1980) Sol particle immunoassay (SPIA) J. Immunoassay. 1, 77–80.PubMedCrossRefGoogle Scholar
  71. 71.
    Grange, J., Roch, A.M.,-Quash, G.A. (1977) Nephelometric assay of antigens and antibodies with latex particles. J. Immunol. Meth. 18, 365–75.CrossRefGoogle Scholar
  72. 72.
    Cambiaso, C.L., Leek, A.E., De Steenwinkel, F., et al. (1977) Particle counting immunoassay (PACIA) A general method for the determination of antibodies, antigens and haptens. J. Immunol. Meth. 18, 33–44.CrossRefGoogle Scholar
  73. 73.
    Galvin, J.P., Looney, C.E., Leflar, C.C., et al. (1983) Particle enhanced photometric immunoassay systems. In: Clinical Laboratory Assays: New Technology and Future Directions. (eds. Nakamura, R.M., Ditto, W.R., Tucker, E.S.) III. p 73–95, Masson Publishing, New York.Google Scholar
  74. 74.
    Gribnau, T.C.J., Leuvering, J.H.W., van Hell, H. (1986) Particle labelled immunoassays: A review. J. Chromatog. 76, 175–89.CrossRefGoogle Scholar
  75. 75.
    Litchfield, W.J., Craig, A.R., Frey, W.A., et al. (1984) Novel shell/core particles for automated immunoassays. Clin. Chem. 30, 1489–93.PubMedGoogle Scholar
  76. 76.
    Kapmeyer, W.H., Pauly, H-E., Tuengler, P. (1988) Automated nephelometric immunoassays with novel shell/core particles. J. Clin. Lab. Anal. 2, 76–83.CrossRefGoogle Scholar
  77. 77.
    Molday, R.S., Dreyer, W.J., Rambaum, A., Yen, S.P.S. (1975) New immunolatex spheres: visual markers of antigen on lymphocytes for scanning electron microscopy. J. Cell. Biol. 64, 75–88.PubMedCrossRefGoogle Scholar
  78. 78.
    Crane, J.E. (1987) Latex agglutination immunoassays. Am. Biotech. Lab. 5, 34–41.Google Scholar
  79. 79.
    Craig, A.R., Frey, W.A., Leflar, C.C., et al. (1983) Covalently bonded high refractive index particle reagents and their use in light scattering immunoassays. US Patent No 4,401,765.Google Scholar
  80. 80.
    Bangs, L.B. (1987) Uniform latex particles. Seradyn Diagnostics Inc. Particle Technology Division.Google Scholar
  81. 81.
    Quash, G., Roch, A-M., Niveleam, A., et al. (1978) The preparation of latex particles with covalently bound polymers; IgG and measles agglutinin and their use in viral agglutination test. J. Immunol. Meth. 22, 165–74.CrossRefGoogle Scholar
  82. 82.
    Limet, J.N., Moussebois, C.H., Cambiaso C.L., et al. (1979) Particle counting immunoassay. IV. The use of F(ab’)2 fragments and Ne-chloroacetyl lysine N-carboxy-anyhdride for their coupling to polystyrene latex particles. J. Immunol. Meth. 28, 25–32.CrossRefGoogle Scholar
  83. 83.
    Goding, J.W. (1978) Use of staphylococcal protein A as an immunological reagent. J. Immunol. Meth. 20, 241–53.CrossRefGoogle Scholar
  84. 84.
    Kohen, F., Amir-Zaltsman, Y., Strasburger, C.J. et al. (1988) The avidin-biotin reaction in immunoassay In: Complementary Immunoassays. (ed Collins, W.P.) p 57–69, John Wiley and Sons, Chichester.Google Scholar
  85. 85.
    Cambiaso, C.L. (1988) Attachment of monoclonal antibodies to latex particles. Br. Pat Application No 8800293.Google Scholar
  86. 86.
    Galvin, J.P. (1983) Particle enhanced immunoassays — a review. In Diagnostic Immunology: Technology Assessment and Quality Assurance. (eds. Nakamura, R.M. and Rippey, J.H.) p 18–30, College of Pathologists. Skokie, Illinois.Google Scholar
  87. 87.
    Price, C.P., Trull, A.K., Berry, D., Gorman, E.G. (1987) Develop-ment and validation of a particle-enhanced immunoassay for C-reactive protein. J. Immunol. Meth. 99, 205–11.CrossRefGoogle Scholar
  88. 88.
    Pauli, C., Bardelli, F., Tarli, P., et al. (1987) A simple latex agglutination test for urinary albumin screening. Clin. Chim. Acta. 166, 67–71.CrossRefGoogle Scholar
  89. 89.
    Medcalf, E.A., Newman, D.J., Gorman, E.G., Price, C.P. (1990) Rapid, robust method for measuring low concentrations of albumin in urine. Clin. Chem. 36, 446–9.PubMedGoogle Scholar
  90. 90.
    Jaggon, R. and Price, C.P. (1987) Performance characteristics of a light scattering immunoassay for thyroxine on a discretionary analyser. J. Auto. Chem. 9, 97–9.CrossRefGoogle Scholar
  91. 91.
    Larsson, A. and Sjöquist, J. (1988) False positive results in latex agglutination tests caused by rheumatoid factor. Clin. Chem. 34, 767–8.PubMedGoogle Scholar

Copyright information

© Palgrave Macmillan, a division of Macmillan Publishers Limited 1991

Authors and Affiliations

  • Christopher Price
  • David Newman

There are no affiliations available

Personalised recommendations