Skip to main content

Oligonucleotide Recognition of Double-helical DNA by Triple-helix Formation

  • Chapter
  • 10 Accesses

Part of the Topics in Molecular and Structural Biology book series (TMSB)

Abstract

The sequence-specific recognition of double-helical DNA is an essential biological process responsible for the regulation of cellular functions including transcription, replication and cell division. The ability to design synthetic molecules that bind sequence-specifically to unique sites on human DNA has major implications for the treatment of genetic, oncogenic and viral diseases. A detailed understanding of the chemical principles for binding specific sites on double-helical DNA with oligodeoxynucleotides (or their analogues) by triple-strand formation would provide a pivotal first step in the development of a novel chemotherapeutic strategy of genetic targeting. This could ultimately enable precise inactivation of undesirable DNA sequences within the human genome.

This is a preview of subscription content, access via your institution.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Arnott, S. and Bond, P. J. (1973). Structures for poly(U)-poly(A)-poly(U) triple stranded polynucleotides. Nature New Biol., 244, 99

    CrossRef  CAS  PubMed  Google Scholar 

  • Arnott, S., Bond, P. J., Seising, E. and Smith, P. J. C. (1976). Models of triple-stranded polynucleotides with optimised stereochemistry. Nucleic Acids Res., 3, 2459

    PubMed Central  CrossRef  CAS  PubMed  Google Scholar 

  • Arnott, S. and Selsing, E. (1974). Structures for the polynucleotide complexes poly(dA)-poly(dT) and poly(dT)-poly(dA)-poly(dT). J. Molec. Biol., 88, 509

    CrossRef  CAS  PubMed  Google Scholar 

  • Bright, G. R., Fisher, G. W., Rogowska, J. and Taylor, D. L. (1987). Fluorescence ratio imaging microscopy: temporal and spatial measurements of cytoplasmic pH. J. Cell Biol., 104, 1019

    CrossRef  CAS  PubMed  Google Scholar 

  • Chu, C. F. and Orgel, L. E. (1985). Non-enzymatic sequence specific cleavage of single stranded DNA. Proc. Natl Acad. Sci. USA, 82, 963

    PubMed Central  CrossRef  CAS  PubMed  Google Scholar 

  • Dervan, P. B. (1986). Design of sequence specific DNA binding molecules. Science, N.Y., 232, 464

    CrossRef  CAS  Google Scholar 

  • Dervan, P. B. (1988). Sequence specific recognition of double helical DNA. A synthetic approach. In Nucleic Acids and Molecular Biology, Vol. 2, F. Eckstein and D. M. J. Lilley (Eds.), pp. 49–64, Springer-Verlag, Heidelberg

    CrossRef  Google Scholar 

  • Dervan, P. B. and Sluka, J. S. (1986). Design of sequence specific DNA binding molecules: bis(distamycin)-phenoxazone. In New Synthetic Methodology and Functionally Interesting Compounds, Z. Yoshida (Ed.), Elsevier, Kyoto, pp. 307–322

    Google Scholar 

  • Dreyer, G. B. and Dervan, P. B. (1985). Sequence specific cleavage of single stranded DNA. Oligodeoxy-nucleotide-EDTA · Fe(II). Proc. Natl Acad. Sci. USA, 82, 968

    PubMed Central  CrossRef  CAS  PubMed  Google Scholar 

  • Felsenfeld, G., Davies, D. R. and Rich, A. (1957). Formation of a three-stranded polynucleotide molecule. J. Am. Chem. Soc., 79, 2023

    CrossRef  CAS  Google Scholar 

  • Griffin, J. H. and Dervan, P. B. (1986). Sequence specific chiral recognition of right-handed double helical DNA by (2S,3S)- and (2R,3R)-dihydroxybis(netropsin)succinamide. J. Am. Chem. Soc., 108, 5008

    CrossRef  CAS  Google Scholar 

  • Griffin, J. H. and Dervan, P. B. (1987). Metalloregulation in the sequence specific binding of synthetic molecules to DNA. J. Am. Chem. Soc., 109, 6840

    CrossRef  CAS  Google Scholar 

  • Hertzberg, R. P. and Dervan, P. B. (1982). Cleavage of double-helical DNA by (methidiumpropyl-EDTA)iron(II). J. Am. Chem. Soc., 104, 313

    CrossRef  CAS  Google Scholar 

  • Hertzberg, R. P. and Dervan, P. B. (1984). Cleavage of DNA with (methidiumpropyl-EDTA) iron(II). Reaction conditions and product analyses. Biochemistry, 23, 3934

    CrossRef  CAS  PubMed  Google Scholar 

  • Hoogsteen, K. (1959). The structure of crystals containing a hydrogen-bonded complex of 1-methylthymine and 9-methyladenine. Acta Cryst., 12, 822

    CrossRef  CAS  Google Scholar 

  • Howard, F. B., Frazier, J., Lipsett, M. N. and Miles, H. T. (1964). Infrared demonstration of two- and three-strand helix formation between poly C and guanosine mononucleotides and oligonucleotides. Biochem. Biophys. Res. Commun., 17, 93

    CrossRef  CAS  Google Scholar 

  • Iverson, B. L. and Dervan, P. B. (1988). Nonenzymatic sequence specific methyl transfer to single stranded DNA. Proc. Natl Acad. Sci. USA, 85, 4615

    PubMed Central  CrossRef  CAS  PubMed  Google Scholar 

  • Kadonaga, J. T., Carner, K. R., Masiarz, F. R. and Tjian, R. (1987). Isolation of cDNA encoding transcription factor Spl and functional analysis of the DNA binding domain. Cell, 51, 1079

    CrossRef  CAS  PubMed  Google Scholar 

  • Knorre, G. D. and Vlassov, V. V. (1985). Complementary-addressed (sequence specific) modification of nucleic acids. Prog. Nucl. Acid Res. Molec. Biol., 32, 291

    CrossRef  CAS  Google Scholar 

  • Le Doan, T., Perrouault, L., Preseuth, D., Habhoub, N., Decout, J. L., Thuong, N., L’homme, J. and Hélène, C. (1987). Sequence-specific recognition, photocrosslinking and cleavage of the DNA double helix by an oligo-[α]-thymidylate covalently linked to an azidoproflavin derivative. Nucl. Acids Res., 15, 7749

    PubMed Central  CrossRef  PubMed  Google Scholar 

  • Lee, J. S., Johnson, D. A. and Morgan, A. R. (1979). Complexes formed by (pyrimidine) n · (purine) n DNAs on lowering the pH are three-stranded. Nucl. Acids Res., 6, 3073

    PubMed Central  CrossRef  CAS  PubMed  Google Scholar 

  • Lee, J. S., Woodsworth, M. L., Latimer, L. J. P. and Morgan, A. R. (1984). Poly(pyrimidine)-poly(purine) synthetic DNAs containing 5-methylcytosine form stable triplexes at neutral pH. Nucl. Acids Res., 12, 6603

    PubMed Central  CrossRef  CAS  PubMed  Google Scholar 

  • Lipsett, M. N. (1963). The interactions of poly C and guanine trinucleotide. Biochem. Biophys. Res. Commun., 11, 224

    CrossRef  CAS  Google Scholar 

  • Lipsett, M. N. (1964). Complex formation between polycytidylic acid and guanine oligonucleotides. J. Biol. Chem., 239, 1256

    CAS  PubMed  Google Scholar 

  • Lyamichev, V. I., Mirkin, S. M., Frank-Kamenetskii, M. D. and Cantor, C. R. (1988). A stable complex between homopyrimidine oligomers and the homologous regions of duplex DNAs. Nucl. Acids Res., 16, 2165

    PubMed Central  CrossRef  CAS  PubMed  Google Scholar 

  • Mack, D., Iverson, B. and Dervan, P. B. (1988). Design and chemical synthesis of a sequence specific DNA-cleaving protein. J. Am. Chem. Soc., 110, 7572

    CrossRef  CAS  Google Scholar 

  • Madshus, I. H. (1988). Regulation of intracellular pH in eukaryotic cells. Biochem. J., 250, 1

    PubMed Central  CrossRef  CAS  PubMed  Google Scholar 

  • Maher, L. J., Wold, B. and Dervan, P. B. (1989). Science, in press

    Google Scholar 

  • Miller, J. H. and Sobell, H. M. (1966). A molecular model for gene repression. Proc. Natl Acad. Sci. USA, 55, 1201

    PubMed Central  CrossRef  CAS  PubMed  Google Scholar 

  • Morgan, A. R. and Wells, R. D. (1968). Specificity of the three-stranded complex formation between double-stranded DNA and single-stranded RNA containing repeating nucleotide sequences. J. Molec. Biol., 37, 63

    CrossRef  CAS  PubMed  Google Scholar 

  • Moser, H. and Dervan, P. B. (1987). Sequence-specific cleavage of double helical DNA by triple helix formation. Science, N.Y., 238, 645

    CrossRef  CAS  Google Scholar 

  • Povsic, T. J. and Dervan, P. B. (1989). Triple helix formation by oligonucleotides on DNA extended to the physiological pH range. J. Am. Chem. Soc., 111, 3059

    CrossRef  CAS  Google Scholar 

  • Praseuth, D., Perrouault, L., Le Doan, T., Chassignol, M., Thuong, N. and Hélène, C. (1988). Sequence-specific binding and photocrosslinking of α and β oligonucleotides to the major groove of DNA via triple-helix formation. Proc. Natl Acad. Sci. USA, 85, 1349

    PubMed Central  CrossRef  CAS  PubMed  Google Scholar 

  • Schultz, P. G., Taylor, J. S. and Dervan, P. B. (1982). Design and synthesis of a sequence specific DNA cleaving molecule. (Distamycin-EDTA)iron(II). J. Am. Chem. Soc., 104, 6861

    CrossRef  Google Scholar 

  • Sluka, J., Bruist, M., Horvath, S. J., Simon, M. I. and Dervan, P. B. (1987). Synthesis of a sequence specific DNA cleaving peptide. Science, N.Y., 238, 1129

    CrossRef  CAS  Google Scholar 

  • Strobel, S. A., Moser, H. E. and Dervan, P. B. (1988). Double strand cleavage of genomic DNA at a single site by triple helix formation. J. Am. Chem. Soc., 110, 7927

    CrossRef  CAS  Google Scholar 

  • Taylor, J. S., Schultz, P. G. and Dervan, P. B. (1984). DNA affinity cleaving. Sequence specific cleavage of DNA by distamycin-EDTA · Fe(II) and EDTA-distamycin · Fe(II). Tetrahedron, 40, 457

    CrossRef  CAS  Google Scholar 

  • Wade, W. S. and Dervan, P. B. (1987). Alteration of the sequence specificity of distamycin on DNA by replacement of an N-methylpyrrolecarboxamide with pyridine-2-carboxamide. J. Am. Chem. Soc., 109, 1574

    CrossRef  CAS  Google Scholar 

  • Youngquist, R. S. and Dervan, P. B. (1985). Sequence specific recognition of B-DNA by oligo-N-methylpyrrole-carboxamides. Proc. Natl Acad. Sci. USA, 82, 2565

    PubMed Central  CrossRef  CAS  PubMed  Google Scholar 

  • Youngquist, R. S. and Dervan, P. B. (1987). Sequence specific recognition of B-DNA by bis(EDTA-distamycin)-fumaramide. J. Am. Chem. Soc., 107, 5528

    CrossRef  Google Scholar 

  • Youngquist, R. S. and Dervan, P. B. (1987). A synthetic peptide binds 16 base pairs of A,T double helical DNA. J. Am. Chem. Soc., 109, 7564

    CrossRef  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Copyright information

© 1989 The Contributors

About this chapter

Cite this chapter

Dervan, P.B. (1989). Oligonucleotide Recognition of Double-helical DNA by Triple-helix Formation. In: Cohen, J.S. (eds) Oligodeoxynucleotides. Topics in Molecular and Structural Biology. Palgrave, London. https://doi.org/10.1007/978-1-349-10869-5_10

Download citation