Non-invasive Measurement of Cardiovascular Response

  • J. D. Harry
Chapter

Abstract

The title of this chapter is wide-ranging and to cover all aspects implicit in the title would require a book of its own. Consequently, this chapter needs to be restrictive—in particular, when it comes to interpreting the words ‘cardiovascular response’. Just one area of the cardiovascular system will be considered, namely cardiac function (i.e. assessments of the heart function). Response will be restricted to the effects of drugs on this cardiovascular parameter at rest and during the stress of exercise. Further, the term ‘non-invasive technique’, while clearly understood by research workers, particularly those involved with assessing the effects of drugs on cardiac function, does lack a clear definition, which is needed when writing a chapter such as this. A working definition could be: non-invasive techniques, when applied to studies involving measurements of cardiac function (invariably left ventricular function), are those which do not employ methods of direct entry into the circulation such as occurs when measuring cardiovascular parameters from cardiac catheterisation. Such techniques, therefore, will be made from the ‘surface’ of the body and will not involve the breaking of the skin (other than perhaps to inject a marker into the circulation for subsequent noninvasive measurements, e.g. as radionuclide methods for assessing cardiac output).

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arnold, J. M. O. and McDevitt, D. G. (1984). Indirect blood pressure measurement during intravenous isoprenoline infusions. Br. J. Clin. Pharm., 19, 114–16CrossRefGoogle Scholar
  2. Baker, D. W., Rubenstein, S. A. and Lord, G. S. (1977). Pulsed doppler echocardiography: principles and applications. Am. J. Med., 63, 69–80CrossRefPubMedGoogle Scholar
  3. Bojanowski, L. M., Timmis, A. D., Najm, Y. C. and Gosling, R. G. (1987). Pulsed doppler ultrasound compared with thermodilution for monitoring cardiac output responses to changing left ventricular function. Cardiovasc. Res., 21, 260–8CrossRefPubMedGoogle Scholar
  4. Borow, K., Neumann, A. and Lang, R. M. (1986). Milrinone versus dobutamine: contribution of altered myocardial mechanics and augmented inotropic state to improved left ventricular performance. Circulation, 73 Suppl. III), 153–60Google Scholar
  5. Calocousis, J. S., Huntsman, L. L. and Curreri, P. W. (1977). Estimation of stroke volume changes by ultrasonic doppler. Circulation, 56, 914–17CrossRefGoogle Scholar
  6. Ceretelli, P., Cruz, J. C., Farhi, L. E. and Rahn, K. (1966). Determination of mixed venous O2 and CO2 tension and cardiac output by a rebreathing method. Resp. Physiol, 1, 258–64CrossRefGoogle Scholar
  7. Collier, C. (1956). Determination of mixed venous CO2 tension by rebreathing. J. Appl. Physiol., 9, 25–9PubMedGoogle Scholar
  8. Daley, P. J., Sagar, K. B. and Wann, L. S. (1985). Doppler echocardiographic measurement of flow velocity in the ascending aorta during supine and upright exercise. Br. Heart J., 54, 562–7PubMedCentralCrossRefPubMedGoogle Scholar
  9. Feigenbaum, H. (1976). Echocardiography, 2nd edn. Lea and Febiger, Philadelphia Franciosa, J. A.Google Scholar
  10. Ragan, D. O. and Rubenstone, S. J. (1976). Validation of the CO2 rebreathing method for measuring cardiac output in patients with hypertension or heart failure. J. Lab. Clin. Med., 88, 672–82PubMedGoogle Scholar
  11. Furnival, C. M., Linden, R. J. and Snow, H. M. (1970). Inotropic changes in the left ventricle: the effect of changes in heart rate, aortic pressure and end-diastolic pressure. J. Physiol., 211, 359–87PubMedCentralCrossRefPubMedGoogle Scholar
  12. Gabriel, S., Atternberg, J. H., Oro, L. and Ekeland, L. G. (1976). Measurement of cardiac output by impedance cardiography in patients with myocardial infarction. Comparative evaluation of impedance and dye dilution methods. Scand. J. Clin. Lab. Invest., 36, 29–34CrossRefPubMedGoogle Scholar
  13. Gardin, J. M., Dabestani, A., Martin, K., Allfine, A., Russell, D. and Henry, W. G. (1984). Reproducibility of Doppler aortic flow measurements: studies on intraobserver, interobserver and day to day variability in normal subjects. Am. J. Cardiol., 54, 1092–8CrossRefPubMedGoogle Scholar
  14. Gibson, D. G. (1975). Assessment of left ventricular function in man by non-invasive techniques. Mod. Trends Cardiol., 3, 247–79Google Scholar
  15. Harry, J. D., Millson, D. S. and Morton, P. B. (1988a). Use of Doppler echocardiography to determine the cardiac effects of dobutamine in volunteers. Pharm. Med., 3, 173–83Google Scholar
  16. Harry, J. D., Norris, S. C., Percival, G. C. and Young, J. (1988b). The dose in humans at which ICI 118,557 (a selective β2-adrenoceptor blocking agent) demonstrates blockade of β1-adrenoceptors. Clin. Pharm. Ther., 43, 492–8CrossRefGoogle Scholar
  17. Hinderliter, A. L., Fitzpatrick, M. A., Schork, N. and Julius, S. (1987). Research utility of non-invasive methods for measurement of cardiac output. Clin. Pharm. Ther., 41, 419–25CrossRefGoogle Scholar
  18. Innes, J. A., Mills, C. J. and Noble, M. I. M. (1987). Validation of beat by beat pulsed doppler measurements of ascending aortic blood velocity in man. Cardiovasc. Res., 21, 72–80CrossRefPubMedGoogle Scholar
  19. Innes, J. A., Simon, T. D., Murphy, K. and Guz, A. (1988). The effects of exercise and subject age on pulsed Doppler measurements of left ventricular ejection in normal man. Q. Jl. Exp. Physiol, 13, 323–41CrossRefGoogle Scholar
  20. Jewitt, D., Mitchall, A., Birkhead, J. and Dollery, C. (1974). Clinical cardiovascular pharmacology of dobutamine, a selective inotropic catecholamine. Lancet, 2, 363–7CrossRefPubMedGoogle Scholar
  21. Kelman, A. W., Sumner, D. J. and Whiting, B. (1981). Systolic time intervals versus heart rate regression equations using atropine in reproducibility studies. Br. J. Clin. Pharm., 12, 15–20CrossRefGoogle Scholar
  22. Kronik, G., Slany, J. and Mosslacher, H. (1979). Comparative value of eight M-mode echocardiographic formulas for determining left ventricular stroke volume. Circulation, 60, 1308–16CrossRefPubMedGoogle Scholar
  23. Kupari, M. (1983). Reproducibility of the systolic time intervals: effect of the temporal range of measurements. Cardiovasc. Res., 17, 339–43CrossRefPubMedGoogle Scholar
  24. Lewis, R. P., Rittgers, S. E., Forester, W. F. and Boudoulas, H. (1977). A critical review of the systolic time intervals. Circulation, 56, 146–8CrossRefPubMedGoogle Scholar
  25. Loepky, J. A., Hockenga, D. E., Green, E. R. and Luft, N. C. (1984). Comparison of non-invasive pulsed doppler and Fick measurements of stroke volume in cardiac patients. Am. Heart J., 107, 339–40CrossRefGoogle Scholar
  26. Marlow, H. F., Harry, J. D. and Shield, A. G. (1980). Duration of action of single intravenous doses of ICI 118587, a cardiac β stimulant. 1st World Congress on Clinical Pharmacology, London. Abstract No. 0772Google Scholar
  27. Mohapatra, S. N. (1981). Non-invasive Cardiovascular Monitoring by Electrical Impedance Technique. Pitman Medical, London, pp. 33–69Google Scholar
  28. Otterstad, J. E., Hurlen, M., Michelsen, S. I. and Krutsen, K. M. (1987). Reproducibility of serial M-mode and doppler echocardiographic recordings of left ventricular dimensions and function: a comparison with traditional measurements of heart rate and blood pressure in apparently healthy men. J. Cardiovasc. Ultrason., 6, 285–95Google Scholar
  29. Popp, R. L. (1982). M-mode echocardiographic assessment of left ventricular function. Am. J. Cardiol., 49, 1312–18CrossRefPubMedGoogle Scholar
  30. Popp, R. L., Fally, K., Brown, O. R. and Harrison, D. C. (1975). Effect of transducer placement on echocardiographic measurement of left ventricular dimensions. Am. J. Cardiol., 34, 537–40CrossRefGoogle Scholar
  31. Raftery, E. B. (1978). The methodology of blood pressure recording. Br. J. Clin. Pharm., 6, 193–202CrossRefGoogle Scholar
  32. Reybrouck, T., Amery, A., Billet, L., Fagard, R. and Stijus, H. (1978). Comparison of cardiac output determined by a carbon dioxide rebreathing and direct Fick method at rest and during exercise. Clin. Sci. Molec. Med., 55, 445–52Google Scholar
  33. Robson, S. C., Boys, R. J. and Hunter, S. (1988). Doppler echocardiographic estimation of cardiac output: analysis of temporal variability. Eur. Heart J., 9, 313–18PubMedGoogle Scholar
  34. Rose, J. S., Nanna, N., Rahintoola, S. H., Elkayam, U., McKay, C. and Chadraratna, P. A. W. (1984). Accuracy of determination of changes in cardiac output by transcutaneous continuous wave doppler computer. J. Am. Coll. Cardiol., 54, 1099–102CrossRefGoogle Scholar
  35. Schuster, A. J. and Nanda, N. V. (1984). Doppler echocardiographic measurement of cardiac output: comparison with a non-golden standard. Am. J. Cardiol., 53, 257–9CrossRefPubMedGoogle Scholar
  36. Silke, B., Evan, J. M., Verma, S. P., Sharma, S. K. and Taylor, S. H. (1988). A new echodoppler ultrasound method of cardiac output determination. Br. J. Clin. Pharm., 25, 147PGoogle Scholar
  37. Stott, F. D., Raftery, E. B. and Goulding, L. (Eds.) (1980). ham 1979—Proceedings of the Third International Symposium on Ambulatory Monitoring. Academic Press, LondonGoogle Scholar
  38. Teo, K. K., Hetherington, M. D., Hoennel, R. G., Greenwood, V., Rossall, R. E. and Kappagoda, T. (1985). Cardiac output measured by impedance cardiography during maximal exercise tests. Cardiovasc. Res., 19, 737–43CrossRefPubMedGoogle Scholar
  39. Weissler, A. M., Harris, W. S. and Schoenfeld, C. D. (1968). Systolic time intervals in heart failure in man. Circulation, 37, 149–59CrossRefPubMedGoogle Scholar
  40. Weissler, A. M., Harris, W. S. and Schoenfeld, C. D. (1969). Bedside techniques for the evaluation of ventricular function in man. Am. J. Cardiol., 23, 577–83CrossRefPubMedGoogle Scholar

Copyright information

© The editors and contributors 1990

Authors and Affiliations

  • J. D. Harry
    • 1
  1. 1.Clinical Pharmacology UnitICI PharmaceuticalsMereside, Alderley EdgeUK

Personalised recommendations