Skip to main content

Non-invasive Measurement of Cardiovascular Response

  • Chapter
Book cover Early Phase Drug Evaluation in Man
  • 42 Accesses

Abstract

The title of this chapter is wide-ranging and to cover all aspects implicit in the title would require a book of its own. Consequently, this chapter needs to be restrictive—in particular, when it comes to interpreting the words ‘cardiovascular response’. Just one area of the cardiovascular system will be considered, namely cardiac function (i.e. assessments of the heart function). Response will be restricted to the effects of drugs on this cardiovascular parameter at rest and during the stress of exercise. Further, the term ‘non-invasive technique’, while clearly understood by research workers, particularly those involved with assessing the effects of drugs on cardiac function, does lack a clear definition, which is needed when writing a chapter such as this. A working definition could be: non-invasive techniques, when applied to studies involving measurements of cardiac function (invariably left ventricular function), are those which do not employ methods of direct entry into the circulation such as occurs when measuring cardiovascular parameters from cardiac catheterisation. Such techniques, therefore, will be made from the ‘surface’ of the body and will not involve the breaking of the skin (other than perhaps to inject a marker into the circulation for subsequent noninvasive measurements, e.g. as radionuclide methods for assessing cardiac output).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Arnold, J. M. O. and McDevitt, D. G. (1984). Indirect blood pressure measurement during intravenous isoprenoline infusions. Br. J. Clin. Pharm., 19, 114–16

    Article  Google Scholar 

  • Baker, D. W., Rubenstein, S. A. and Lord, G. S. (1977). Pulsed doppler echocardiography: principles and applications. Am. J. Med., 63, 69–80

    Article  CAS  PubMed  Google Scholar 

  • Bojanowski, L. M., Timmis, A. D., Najm, Y. C. and Gosling, R. G. (1987). Pulsed doppler ultrasound compared with thermodilution for monitoring cardiac output responses to changing left ventricular function. Cardiovasc. Res., 21, 260–8

    Article  CAS  PubMed  Google Scholar 

  • Borow, K., Neumann, A. and Lang, R. M. (1986). Milrinone versus dobutamine: contribution of altered myocardial mechanics and augmented inotropic state to improved left ventricular performance. Circulation, 73 Suppl. III), 153–60

    Google Scholar 

  • Calocousis, J. S., Huntsman, L. L. and Curreri, P. W. (1977). Estimation of stroke volume changes by ultrasonic doppler. Circulation, 56, 914–17

    Article  Google Scholar 

  • Ceretelli, P., Cruz, J. C., Farhi, L. E. and Rahn, K. (1966). Determination of mixed venous O2 and CO2 tension and cardiac output by a rebreathing method. Resp. Physiol, 1, 258–64

    Article  Google Scholar 

  • Collier, C. (1956). Determination of mixed venous CO2 tension by rebreathing. J. Appl. Physiol., 9, 25–9

    CAS  PubMed  Google Scholar 

  • Daley, P. J., Sagar, K. B. and Wann, L. S. (1985). Doppler echocardiographic measurement of flow velocity in the ascending aorta during supine and upright exercise. Br. Heart J., 54, 562–7

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Feigenbaum, H. (1976). Echocardiography, 2nd edn. Lea and Febiger, Philadelphia Franciosa, J. A.

    Google Scholar 

  • Ragan, D. O. and Rubenstone, S. J. (1976). Validation of the CO2 rebreathing method for measuring cardiac output in patients with hypertension or heart failure. J. Lab. Clin. Med., 88, 672–82

    PubMed  Google Scholar 

  • Furnival, C. M., Linden, R. J. and Snow, H. M. (1970). Inotropic changes in the left ventricle: the effect of changes in heart rate, aortic pressure and end-diastolic pressure. J. Physiol., 211, 359–87

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gabriel, S., Atternberg, J. H., Oro, L. and Ekeland, L. G. (1976). Measurement of cardiac output by impedance cardiography in patients with myocardial infarction. Comparative evaluation of impedance and dye dilution methods. Scand. J. Clin. Lab. Invest., 36, 29–34

    Article  CAS  PubMed  Google Scholar 

  • Gardin, J. M., Dabestani, A., Martin, K., Allfine, A., Russell, D. and Henry, W. G. (1984). Reproducibility of Doppler aortic flow measurements: studies on intraobserver, interobserver and day to day variability in normal subjects. Am. J. Cardiol., 54, 1092–8

    Article  CAS  PubMed  Google Scholar 

  • Gibson, D. G. (1975). Assessment of left ventricular function in man by non-invasive techniques. Mod. Trends Cardiol., 3, 247–79

    Google Scholar 

  • Harry, J. D., Millson, D. S. and Morton, P. B. (1988a). Use of Doppler echocardiography to determine the cardiac effects of dobutamine in volunteers. Pharm. Med., 3, 173–83

    CAS  Google Scholar 

  • Harry, J. D., Norris, S. C., Percival, G. C. and Young, J. (1988b). The dose in humans at which ICI 118,557 (a selective β2-adrenoceptor blocking agent) demonstrates blockade of β1-adrenoceptors. Clin. Pharm. Ther., 43, 492–8

    Article  CAS  Google Scholar 

  • Hinderliter, A. L., Fitzpatrick, M. A., Schork, N. and Julius, S. (1987). Research utility of non-invasive methods for measurement of cardiac output. Clin. Pharm. Ther., 41, 419–25

    Article  CAS  Google Scholar 

  • Innes, J. A., Mills, C. J. and Noble, M. I. M. (1987). Validation of beat by beat pulsed doppler measurements of ascending aortic blood velocity in man. Cardiovasc. Res., 21, 72–80

    Article  CAS  PubMed  Google Scholar 

  • Innes, J. A., Simon, T. D., Murphy, K. and Guz, A. (1988). The effects of exercise and subject age on pulsed Doppler measurements of left ventricular ejection in normal man. Q. Jl. Exp. Physiol, 13, 323–41

    Article  Google Scholar 

  • Jewitt, D., Mitchall, A., Birkhead, J. and Dollery, C. (1974). Clinical cardiovascular pharmacology of dobutamine, a selective inotropic catecholamine. Lancet, 2, 363–7

    Article  CAS  PubMed  Google Scholar 

  • Kelman, A. W., Sumner, D. J. and Whiting, B. (1981). Systolic time intervals versus heart rate regression equations using atropine in reproducibility studies. Br. J. Clin. Pharm., 12, 15–20

    Article  CAS  Google Scholar 

  • Kronik, G., Slany, J. and Mosslacher, H. (1979). Comparative value of eight M-mode echocardiographic formulas for determining left ventricular stroke volume. Circulation, 60, 1308–16

    Article  CAS  PubMed  Google Scholar 

  • Kupari, M. (1983). Reproducibility of the systolic time intervals: effect of the temporal range of measurements. Cardiovasc. Res., 17, 339–43

    Article  CAS  PubMed  Google Scholar 

  • Lewis, R. P., Rittgers, S. E., Forester, W. F. and Boudoulas, H. (1977). A critical review of the systolic time intervals. Circulation, 56, 146–8

    Article  CAS  PubMed  Google Scholar 

  • Loepky, J. A., Hockenga, D. E., Green, E. R. and Luft, N. C. (1984). Comparison of non-invasive pulsed doppler and Fick measurements of stroke volume in cardiac patients. Am. Heart J., 107, 339–40

    Article  Google Scholar 

  • Marlow, H. F., Harry, J. D. and Shield, A. G. (1980). Duration of action of single intravenous doses of ICI 118587, a cardiac β stimulant. 1st World Congress on Clinical Pharmacology, London. Abstract No. 0772

    Google Scholar 

  • Mohapatra, S. N. (1981). Non-invasive Cardiovascular Monitoring by Electrical Impedance Technique. Pitman Medical, London, pp. 33–69

    Google Scholar 

  • Otterstad, J. E., Hurlen, M., Michelsen, S. I. and Krutsen, K. M. (1987). Reproducibility of serial M-mode and doppler echocardiographic recordings of left ventricular dimensions and function: a comparison with traditional measurements of heart rate and blood pressure in apparently healthy men. J. Cardiovasc. Ultrason., 6, 285–95

    Google Scholar 

  • Popp, R. L. (1982). M-mode echocardiographic assessment of left ventricular function. Am. J. Cardiol., 49, 1312–18

    Article  CAS  PubMed  Google Scholar 

  • Popp, R. L., Fally, K., Brown, O. R. and Harrison, D. C. (1975). Effect of transducer placement on echocardiographic measurement of left ventricular dimensions. Am. J. Cardiol., 34, 537–40

    Article  Google Scholar 

  • Raftery, E. B. (1978). The methodology of blood pressure recording. Br. J. Clin. Pharm., 6, 193–202

    Article  CAS  Google Scholar 

  • Reybrouck, T., Amery, A., Billet, L., Fagard, R. and Stijus, H. (1978). Comparison of cardiac output determined by a carbon dioxide rebreathing and direct Fick method at rest and during exercise. Clin. Sci. Molec. Med., 55, 445–52

    CAS  Google Scholar 

  • Robson, S. C., Boys, R. J. and Hunter, S. (1988). Doppler echocardiographic estimation of cardiac output: analysis of temporal variability. Eur. Heart J., 9, 313–18

    CAS  PubMed  Google Scholar 

  • Rose, J. S., Nanna, N., Rahintoola, S. H., Elkayam, U., McKay, C. and Chadraratna, P. A. W. (1984). Accuracy of determination of changes in cardiac output by transcutaneous continuous wave doppler computer. J. Am. Coll. Cardiol., 54, 1099–102

    Article  CAS  Google Scholar 

  • Schuster, A. J. and Nanda, N. V. (1984). Doppler echocardiographic measurement of cardiac output: comparison with a non-golden standard. Am. J. Cardiol., 53, 257–9

    Article  CAS  PubMed  Google Scholar 

  • Silke, B., Evan, J. M., Verma, S. P., Sharma, S. K. and Taylor, S. H. (1988). A new echodoppler ultrasound method of cardiac output determination. Br. J. Clin. Pharm., 25, 147P

    Google Scholar 

  • Stott, F. D., Raftery, E. B. and Goulding, L. (Eds.) (1980). ham 1979—Proceedings of the Third International Symposium on Ambulatory Monitoring. Academic Press, London

    Google Scholar 

  • Teo, K. K., Hetherington, M. D., Hoennel, R. G., Greenwood, V., Rossall, R. E. and Kappagoda, T. (1985). Cardiac output measured by impedance cardiography during maximal exercise tests. Cardiovasc. Res., 19, 737–43

    Article  CAS  PubMed  Google Scholar 

  • Weissler, A. M., Harris, W. S. and Schoenfeld, C. D. (1968). Systolic time intervals in heart failure in man. Circulation, 37, 149–59

    Article  CAS  PubMed  Google Scholar 

  • Weissler, A. M., Harris, W. S. and Schoenfeld, C. D. (1969). Bedside techniques for the evaluation of ventricular function in man. Am. J. Cardiol., 23, 577–83

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Copyright information

© 1990 The editors and contributors

About this chapter

Cite this chapter

Harry, J.D. (1990). Non-invasive Measurement of Cardiovascular Response. In: O’Grady, J., Linet, O.I. (eds) Early Phase Drug Evaluation in Man. Palgrave, London. https://doi.org/10.1007/978-1-349-10705-6_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-349-10705-6_21

  • Publisher Name: Palgrave, London

  • Print ISBN: 978-1-349-10707-0

  • Online ISBN: 978-1-349-10705-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics