Advertisement

Normal Anatomical Development of the Primate Primary Visual Pathway

  • L. Garey
Part of the Wenner-Gren Center International Symposium Series book series (WGS)

Abstract

For many years a considerable effort has been made to understand the possible underlying Physiopathological mechanisms of amblyopia by the study of animal models. Initially the cat and, more recently, the monkey have been extensively used in such studies (Wiesel, 1982). This experimental approach has shown that during a “critical” period in the first few weeks of the animal’s life a normal visual environment is necessary to prevent major structural and functional abnormalities occuring in the developing visual system, and especially the lateral geniculate nucleus (LGN) and visual cortex. Attention has also been turned to the normal development of primate visual pathways, and the comparison of such development in human and non-human primates. Such comparisons will certainly be of value in possible extrapolations from monkey to human pathological situations.

Keywords

Visual Cortex Lateral Geniculate Nucleus Marmoset Monkey Human Visual Cortex Ocular Dominance Column 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abramov, I., Gordon, J., Hendrickson, A., Hainline, L., Dobson, V. and LaBossiere E. (1982). The retina of the newborn human infant. Science, 217. 265–267.PubMedGoogle Scholar
  2. Awaya, S., Miyake, Y., Imaizumi, Y., Shiose, Y., Kanda, T. and Komuro, K. (1973). Amblyopia in man, suggestive of stimulus deprivation amblyopia. Jap. J. Ophthalmol., 17, 69–82.Google Scholar
  3. Bach, L. and Seefelder, R. (1911). Atlas zur Entwicklungsgeschichte des menschlichen Auges. Engelmann, Leipzig.Google Scholar
  4. Blakemore, C., Garey, L.J. and Vital-Durand, F. (1979). Developmental plasticity in the monkey visual system. In Neural Growth and Differentiation (eds. E. Meisami and M.A.B. Brazier), Raven Press, New York.Google Scholar
  5. Blakemore, C. and Vital-Durand, F. (1979). Development of the neural basis of visual acuity in monkeys. Speculation on the origin of deprivation amblyopia. Trans. Ophthalmol. Soc. U.K. 99, 363–368.Google Scholar
  6. Boothe, R.G., Greenough, W.T., Lund, J.S. and Wrege, K. (1979). A quantitative investigation of spine and dendrite development of neurons in visual cortex (area 17) of Macaca nemestrina monkeys. J. Comp. Neurol., 186, 473–490.CrossRefPubMedGoogle Scholar
  7. Courten, C. de and Garey, L.J. (1982). Morphology of the neurons in the human lateral geniculate nucleus and their normal development. A Golgi study. Exp. Brain Res., 47, 159–171.CrossRefPubMedGoogle Scholar
  8. Courten, C. de and Garey, L.J. (1983). Développement morphologique de la voie visuelle primaire chez l’enfant. J. Fr. Ophtalmol., 6, 187–202.PubMedGoogle Scholar
  9. Dobson, V. and Teller, D.Y. (1978). Visual acuity in human infants: a review and comparison of behavioral and electrophysiological studies. Vision Res., 18, 1469–1483.CrossRefPubMedGoogle Scholar
  10. Fritschy, J.M. and Garey, L.J. (1986a). Quantitative changes in morphological parameters in the developing visual cortex of the marmoset monkey. Devel. Brain Res., 29, 173–188.CrossRefGoogle Scholar
  11. Fritschy, J.M. and Garey, L.J. (1986b). Postnatal development of quantitative morphological parameters in the lateral geniculate nucleus of the marmoset monkey. Devel. Brain Res., 30, 157–168.CrossRefGoogle Scholar
  12. Fritschy, J.M. and Garey, L.J. (1987). Postnatal development of dendrites in the lateral geniculate nucleus of the marmoset monkey (Callithrix jacchus): a quantitative Golgi study. Submitted.Google Scholar
  13. Garey, L.J. and de Courten, C. (1983). Structural development of the lateral geniculate nucleus and visual cortex in monkey and man. Behav. Brain Res., 10, 3–13.CrossRefPubMedGoogle Scholar
  14. Garey, L.J. and Saini, K.D. (1981). Golgi studies of the normal development of neurons in the lateral geniculate nucleus of the monkey. Exp. Brain Res., 44, 117–128.CrossRefPubMedGoogle Scholar
  15. Gottlieb, M.D., Pasik, P. and Pasik, T. (1985). Early postnatal development of the monkey visual system. I. Growth of the lateral geniculate nucleus and striate cortex. Devel. Brain Res., 17, 53–62.Google Scholar
  16. Headon, M.P., Sloper, J.J., Hiorns, R.W. and Powell, T.P.S. (1981). Cell sizes in the lateral geniculate nucleus of normal infant and adult rhesus monkeys. Brain Res., 229, 183–186.CrossRefPubMedGoogle Scholar
  17. Held, R. (1979). Development of visual resolution. Can. J. Psychol., 33, 213–221.CrossRefPubMedGoogle Scholar
  18. Hendrickson, A.E., Hunt, S.P. and Wu J.Y. (1981). Immunocytochemical localization of glutamic acid decarboxylase in monkey striate cortex. Nature, 292, 605–607.CrossRefPubMedGoogle Scholar
  19. Hendrickson, A. and Kupfer, C. (1976). The histogenesis of the fovea in the macaque monkey. Invest. Ophthalmol., 15, 746–756.Google Scholar
  20. Hendrickson, A.E., Wilson, J.R. and Ogren, M.P. (1978). The neuroanatomical organization of pathways between the dorsal lateral geniculate nucleus and visual cortex in Old World and New World primates. J. Comp. Neurol., 182. 123–136.CrossRefPubMedGoogle Scholar
  21. Hendrickson, A.E. and Yuodelis, C. (1984). The morphological development of the human fovea. Ophthalmol., 91, 603–612.CrossRefGoogle Scholar
  22. Heumann, D. and Leuba, G. (1983). Neuronal death in the development and aging of the cerebral cortex of the mouse. Neuropathol. Appl. Neurobiol., 9, 297–311.CrossRefPubMedGoogle Scholar
  23. Hickey, T.L. (1977). Postnatal development of the human lateral geniculate nucleus: relationship to a critical period for the visual system. Science, 198, 836–838.PubMedGoogle Scholar
  24. Hickey, T.L. (1981). The developing visual system. Trends in Neurosci., 4, 41–44.CrossRefGoogle Scholar
  25. Hitchcock, P.F. and Hickey, T.L. (1980a). Ocular dominance columns: evidence for their presence in humans. Brain Res., 182, 176–179.CrossRefPubMedGoogle Scholar
  26. Hitchcock, P.F. and Hickey, T.L. (1980b). Prenatal development of the human lateral geniculate nucleus. J. Comp. Neurol., 194, 395–411.CrossRefPubMedGoogle Scholar
  27. Hollenberg, M.J. and Spira, A.W. (1973). Human retinal development: ultrastructure of the outer retina. Amer. J. Anat., 137, 357–385.CrossRefPubMedGoogle Scholar
  28. Holstein, G.R., Pasik, T., Pasik, P. and Hamori, J. (1985). Early postnatal development of the monkey visual system. II. Elimination of retinogeniculate synapses. Devel. Brain Res., 20, 15–31.Google Scholar
  29. Horton, J.C. (1984). Cytochrome oxidase patches: a new cytoarchitectonic feature of monkey visual cortex. Phil. Trans. Roy. Soc. B, 304. 199–253.CrossRefGoogle Scholar
  30. Horton, J.C. and Hedley-Whyte, E.T. (1984). Mapping of cytochrome oxidase patches and ocular dominance columns in human visual cortex. Phil. Trans. Roy. Soc. B, 304, 255–272.CrossRefGoogle Scholar
  31. Huttenlocher, P.R., Courten, C. de, Garey, L.J. and Van der Loos, H. (1982). Synaptogenesis in human visual cortex — evidence for synapse elimination during normal development. Neurosci. Letters, 33, 247–252.CrossRefGoogle Scholar
  32. Leuba, G. and Garey, L.J. (1984). Development of dendritic patterns in the lateral geniculate nucleus of monkey: a quantitative Golgi study. Devel. Brain Res., 16, 285–299.CrossRefGoogle Scholar
  33. Leuba, G. and Garey, L.J. (1987). Evolution of neuronal numerical density in the developing and aging human visual cortex. Human Neurobiol., In Press.Google Scholar
  34. Leuba, G., Kraftsik, R. and Garey, L.J. (1985). Development of dendrites in the human lateral geniculate nucleus. Neurosci. Letters, Suppl. 22, 309.Google Scholar
  35. Lund, J.S., Boothe, R.G. and Lund, R.D. (1977). Development of neurons in the visual cortex (area 17) of the monkey (Macaca nemestrina): a Golgi study from fetal day 127 to postnatal maturity. J. Comp. Neurol., 176, 149–188.CrossRefPubMedGoogle Scholar
  36. Mann, I. (1964). The Development of the Human Eye. British Medical Association, London.Google Scholar
  37. Michel, A.E. and Garey, L.J. (1984). The development of dendritic spines in the human visual cortex. Human Neurobiol., 3, 223–227. rhesus monkey retina. I. Emergence of the inner plexiform layer and its synapses. J. Comp. Neurol., 241, 420–434.Google Scholar
  38. O’Kusky, J. and Colonnier. M. (1982). Postnatal changes in the number of neurons and synapses in the visual cortex (area 17) of the macaque monkey: a stereological analysis in normal and monocularly deprived animals. J. Comp. Neurol., 210, 291–306.CrossRefPubMedGoogle Scholar
  39. Pirchio, M., Spinelli, D., Fiorentini, A. and Maffei, L. (1978). Infant contrast sensitivity evaluated by evoked potentials. Brain Res., 141, 179–184.CrossRefPubMedGoogle Scholar
  40. Rakic, P., Bourgeois, J.P., Eckenhoff, M.F., Zecevic, N. and Goldman-Rakic, P.S. (1986). Concurrent overproduction of synapses in diverse regions of the primate cerebral cortex. Science, 232, 232–234.PubMedGoogle Scholar
  41. Rakic, P. and Riley, K.P. (1983). Overproduction and elimination of retinal axons in the fetal rhesus monkey. Science, 219, 1441–1444.Google Scholar
  42. Saini, K.D. and Garey, L.J. (1981). Morphology of neurons in the lateral geniculate nucleus of the monkey. A Golgi study. Exp. Brain Res., 42., 235–248.PubMedGoogle Scholar
  43. Samorajski, T., Keefe, J.R. and Ordy, J.M. (1965). Morphogenesis of photoreceptor and retinal ultrastructure in a sub-human primate. Vision Res., 5, 639–648.CrossRefPubMedGoogle Scholar
  44. Sauer, B., Kammradt, G., Krauthausen, I., Kretschmann, H.J., Lange, H.W. and Wingert, F. (1983). Qualitative and quantitative development of the visual cortex in man. J. Comp. Neurol., 214, 441–450.CrossRefGoogle Scholar
  45. Smelser, G.K., Ozanics, V., Rayborn, M. and Sagun, D. (1974). Retinal synaptogenesis in the primate. Invest. Ophthalmol., 13, 340–361.PubMedGoogle Scholar
  46. Spatz, W.B. (1979). The retino-geniculo-cortical pathway in Callithrix. II. The geniculo-cortical projection. Exp. Brain Res., 36, 401–410.CrossRefPubMedGoogle Scholar
  47. Spira, A.W. and Hollenberg, M.J. (1973). Human retinal development: ultrastructure of the inner retinal layers. Devel. Biol., 31, 1–21.CrossRefGoogle Scholar
  48. Takashima, S., Chan, F., Becker, L.E. and Armstrong D.L. (1980). Morphology of the developing visual cortex of the human infant. A quantitative and qualitative Golgi study. J Neuropathol. Exp. Neurol. 39, 487–501.CrossRefPubMedGoogle Scholar
  49. Teller D.Y. (1981). The development of visual acuity in human and monkey infants. Trends in Neurosci., 4, 21–24.CrossRefGoogle Scholar
  50. Vital-Durand, F., Garey, L.J. and Blakemore, C. (1978). Monocular and binocular deprivation in the monkey: morphological effects and reversibility. Brain Res., 158, 45–64.CrossRefPubMedGoogle Scholar
  51. Von Noorden, G.K. (1977). Mechanisms of amblyopia. Adv. Ophthalmol., 34, 93–115.PubMedGoogle Scholar
  52. Von Noorden, G.K. (1981). New clinical aspects of stimulus deprivation amblyopia. Amer. J. Ophthalmol., 92, 416–421.CrossRefGoogle Scholar
  53. Wiesel, T.N. (1982). Postnatal development of the visual cortex and the influence of environment. Nature, 299, 583–591.CrossRefPubMedGoogle Scholar
  54. Wiesel, T.N. and Hubel, D.H. (1974). Ordered arrangement of orientation columns in monkeys lacking visual experience. J. Comp. Neurol., 158, 307–318.CrossRefPubMedGoogle Scholar
  55. Wiesel, T.N., Hubel, D.H. and Lam, D.M.K. (1974). Autoradiographic demonstration of ocular-dominance columns in the monkey striate cortex by means of transneuronal transport. Brain Res., 79, 273–279.CrossRefPubMedGoogle Scholar

Copyright information

© The Wenner-Gren Center 1988

Authors and Affiliations

  • L. Garey

There are no affiliations available

Personalised recommendations