Serotonin pp 21-30 | Cite as

5-HT Receptors on Afferent Neurones

  • B. P. Richardson
  • G. Engel
  • P. Donatsch
  • K. -H Buchheit
Part of the Satellite Symposia of the IUPHAR 10th International Congress of Pharmacology book series (SSNIC)


Receptors for 5-hydroxytryptamine (5-HT) are widely distributed over the mammalian peripheral nervous system (Wallis, 1981; Fozard, 1984). Those located on afferent neurones generally mediate excitatory actions of 5-HT, with neuronal inhibition being only rarely encountered (Paintal, 1973; Wallis, 1981; Roberts, 1984; Higashi and Nishi, 1982). Until recently it was unclear which receptor subtype mediates the stimulant action of 5-HT on primary afferent neurones, because such responses are refractory to blockade by the older, classical 5-HT receptor antagonists such as methysergide or cyproheptadine (Fozard, 1984). However, the recent discovery of new agonist and antagonist drugs with a high degree of selectivity for the different 5-HT receptor subtypes (Bradley et al., 1986; Richardson and Engel, 1986; Saxena et al., 1986) has stimulated renewed interest in this topic.


Carotid Body Nodose Ganglion Carotid Sinus Nerve Flare Response Afferent Neurone 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Armstrong, D. J. and Kay, I. S. (1985). MDL 72222 (a 5-HT antagonist) antagonizes the pulmonary depressor and respiratory chemoreflexes evoked by phenylbi-guanide in anaesthetized rabbits. J. Physiol., 365, 104PGoogle Scholar
  2. Armstrong, D. J., Kay, I. S. and Russell, N. J. W. (1986). MDL 72222 antagonizes the reflex tachypnoeic response to miliary pulmonary embolism in anaesthetized rabbits. J. Physiol., 381, 13PGoogle Scholar
  3. Azami, J., Fozard, J. R., Round, A. A. and Wallis, D. I (1985). The depolarizing action of 5-hydroxytryptamine on rabbit vagal primary afferent and sympathetic neurones and its selective blockade by MDL 72222. Naunyn-Schmiedeberg’s Arch. Pharmacol., 328, 423–429Google Scholar
  4. Black, A. M. S., Comroe, J. H. and Jacobs, L. (1972). Species difference in carotid body response of cat and dog to dopamine and serotonin. Am. J. Physiol., 233, 1097–1102Google Scholar
  5. Bradley, P. B., Engel, G., Feniuk, W., Fozard, J. R., Humphrey, P. P. A., Middle miss, D. N., Mylecharane, E. J., Richardson, EL. P. and Saxena, P. R. (1986). Proposals for the classification and nomenclature of functional receptors for 5-hydroxytryptamine. Neuropharmacology, 25, 563–576Google Scholar
  6. Demis, J., Davis, M. J. and Lawler, J. C. (1960). A study of the cutaneous effects of serotonin. J. Invest. Dermatol., 34, 34–49Google Scholar
  7. Donatsch, P., Engel, G., Richardson, B. P. and Stadler, P. A. (1984a). Subtypes of neuronal 5-hydroxytryptamine (5-HT) receptors as identified by competitive antagonists. Br. J. Pharmacol., 81, 33PGoogle Scholar
  8. Donatsch, P., Engel, G., Richardson, B. P. and Stadler, P. A. (1984b). The inhibitory effect of neuronal 5-hydroxytryptamine (5-HT) receptor antagonists on experimental pain in humans. Br. J. Pharmacol., 81, 35PGoogle Scholar
  9. Fastier, F. N., McDowall, M. A. and Waal, H. (1959). Pharmacological properties of phenylbiguanide and other amidine derivatives in relation to those of 5-hydroxytryptamine. Br. J. Pharmacol. Chemother., 14, 527–535Google Scholar
  10. Fozard, J. R. (1984). Neuronal 5-HT receptors in the periphery. Neuropharmacology, 23, 1473–1486Google Scholar
  11. Fozard, J. R. and Gittos, M. W. (1983). Selective blockade of 5-hydroxytryptamine neuronal receptors by benzoic acid esters of tropine. Br. J. Pharmacol., 80, 511PGoogle Scholar
  12. Greaves, M. and Shuster, S. (1967). Responses of skin blood vessels to bradykinin, histamine and 5-hydroxytryptamine. J. Physiol., 193, 255–267Google Scholar
  13. Higashi, H. and Nishi, S. (1982). 5-Hydroxytryptamine receptors on visceral primary afferent neurones on rabbit nodose ganglion. J. Physiol., 323, 543–567Google Scholar
  14. Ireland, S. J. and Tyers, M. B. (1987). Pharmacological characterization of 5-hydroxytryptamine-induced depolarization of the rat isolated vagus nerve. Br. J. Pharmacol., 90, 229–238Google Scholar
  15. Ireland, S. J., Straughan, D. W. and Tyers, M. B. (1982). Antagonism by metoclopramide and quipazine of 5-hydroxytryptamine-induced depolarizations of rat isolated vagus nerve. Br. J. Pharmacol., 75, 16PGoogle Scholar
  16. James, T. N., Isobe, J. H. and Urthaler, F. (1975). Analysis of components in a cardiogenic hypertensive chemoreflex. Circulation, 52, 179–192Google Scholar
  17. Keele, C. A. and Armstrong, D. (1964). In Substances Producing Pain and Itch, Arnold, London, 30–66Google Scholar
  18. Kirby, G. C. and McQueen, D.S. (1984). Effects of the antagonists MDL 72222 and ketanserin on responses of cat carotid body chemoreceptors to 5-hydroxytryptamine. Br. J. Pharmacol., 83, 259–269Google Scholar
  19. Krayer, O. (1961). The history of the Bezold-Jarisch effect. Naunyn-Schmiedeberg’s Arch. Pharmacol., 240, 361–368.Google Scholar
  20. Lembeck. P. and Holzer, P. (1979). Substance P as neurogenic mediator of antidromic vasodilation and neurogenic plasma extravasation. Naunyn-Schmideberg’s Arch. Pharmacol., 310, 175–182Google Scholar
  21. Neto, F. R. (1978). The depolarizing action of 5-HT on mammalian non-myelinated nerve fibres, Eur. J. Pharmacol., 49, 351–356Google Scholar
  22. Nishi, K. (1975). The action of 5-hydroxytryptamine on chemoreceptor discharge of the cat’s carotid body. Br. J. Pharmacol., 55, 27–40Google Scholar
  23. Orwin, J. M. and Fozard, J. R. (1986). Blockade of the flare response to intradermal 5-hydroxytryptamine in man by MDL 72222, a selective antagonist at neuronal 5-hydroxytryptamine receptors. Eur. J. Clin. Pharmacol., 30, 209–212Google Scholar
  24. Paintal, A. S. (1973). Vagal sensory receptors and their reflex effects. Physiol. Rev., 53, 159–227Google Scholar
  25. Richardson, B. P. and Engel, G. (1986). The pharmacology and function of 5-HT3receptors. Trends in Neurosci., 9, 424–428Google Scholar
  26. Richardson, B. P., Engel, G., Donatsch, P. and Stadler, P. A. (1985). Identification of 5-hydroxytryptamine M-receptor subtypes and their specific blockade by a new class of drugs. Nature, 316, 126–131Google Scholar
  27. Roberts, M. H. T. (1984). 5-hydroxytryptamine and antinociception. Neuropharma-cology, 23, 1529–1536Google Scholar
  28. Round, A. A. and Wallis, D. I. (1985). Selective blockade by ICS 205–930 of 5-hydroxytryptamine (5-HT) depolarizations of rabbit vagal afferent and sympathetic ganglion cells. Br. J. Pharmacol., 86, 734PGoogle Scholar
  29. Round, A. A. and Wallis, D. I. (1986). The depolarizing action of 5-hydroxytryptamine on rabbit vagal afferent and sympathetic neurones in vitro and its selective blockade by ICS 205–930. Br. J. Pharmacol., 88, 485–494Google Scholar
  30. Salmoiraghi, G. C., Page, I. H. and McCubbin, J. W. (1956). Cardiovascular and respiratory response to intravenous serotonin in rats. J. Pharmacol. Exp. Ther., 118, 447–481Google Scholar
  31. Saxena, P. R., Richardson, B. P., Mylecharane, E. J., Middlemiss, D. N., Humphrey, P. P. A., Fozard, J. R., Feniuk, W., Engel, G. and Bradley, P. B. (1986). Functional receptors for 5-hydroxytryptamine. Trends in Pharmacol. Sci., 94 (centre fold)Google Scholar
  32. Sicuteri, F., Fanciullacci, M., Franchi, G. and Del Biancho, P. L. (1965). Serotonin—bradykinin potentiation on the pain receptors in man. Life Sci., 4, 303–316Google Scholar
  33. Wallis, D. (1981). Neuronal 5-hydroxytryptamine receptors outside the central nervous system. Life Sci., 29, 2345–2355Google Scholar
  34. Wallis, D. I., Stansfeld, C. E. and Nash, H. L. (1982). Depolarizing responses recorded from nodose ganglion cells of the rabbit evoked by 5-hydroxytryptamine and other substances. Neuropharmacology, 21, 31–40Google Scholar
  35. Yoshoika, M., Matsumoto, M., Togashi, H., Abe, M., Tochihara, M. and Saito, H. (1987). The 5-hydroxytryptamine-induced increase in chemoreceptor afferent nerve discharge and its blockade by ICS 205–930 in the rat. Res. Commun. Psychol. Psychiat. Behav., 12, 215–220Google Scholar

Copyright information

© The editors and contributors 1989

Authors and Affiliations

  • B. P. Richardson
    • 1
  • G. Engel
    • 1
  • P. Donatsch
    • 1
  • K. -H Buchheit
    • 1
  1. 1.Preclinical Research DepartmentSandoz LimitedBaselSwitzerland

Personalised recommendations