Skip to main content

Structural Analyses Predict the Primary Pharmacophore and Secondary Sites for the D2 Receptor

  • Chapter
Pharmacology and Functional Regulation of Dopaminergic Neurons

Abstract

The D2 subtype of dopamine (DA) receptor is known to play important roles in hormone secretion, motor function and clinical syndromes, and D2 agonists are finding increasing use in clinical medicine (Meitzer, 1980; Schachter et al., 1980; Stoof and Kebabian, 1984; Seeman and Grigordiadis, 1987). D2 agonists exhibit wide structural diversity and recently several structure activity relationship (SAR) studies have attempted to define the molecular requirements essential for dopaminergic activity (Cannon, 1985). Such SAR studies can provide insights into the chemomorphology of the D2 receptor macromolecular complex. Although a number of receptor models have been proposed, most have not attempted to examine every class of DA agonist (for review see, Katerinopoulos and Schuster, 1987).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Andrews, P.R. and Lloyd, E.J. (1982). Molecular conformation and biological activity of central nervous system active drugs. Med. Res. Rev., 2 355–393.

    Article  CAS  PubMed  Google Scholar 

  • Beart, P.M., Cook, C.J., Cincotta, M., de Vries, D.J., Tepper, P., Dijkstra, D. and Horn, A.S. (1987). Radioreceptor binding reveals the potencies of N,N-disubstituted 2-aminotetralins as D2 dopamine agonists. N.S. Arch. Pharmacol., in press.

    Google Scholar 

  • Beaulieu, M., Itoh, Y., Tepper, P., Horn, A.S. and Kebabian, J.W. (1984). N,N-disubstituted 2-aminotetralins are potent D-2 dopamine receptor agonists. Eur. J. Pharmacol. 105 15–21

    Article  CAS  PubMed  Google Scholar 

  • Cannon, J.G. (1985). Dopamine agonists: structure-activity relationships. Prog. Drug Res., 29, 303–414.

    Article  CAS  PubMed  Google Scholar 

  • de Vries, D.J. and Beart, P.M. (1986). Role of assay conditions in determining agonist potency at D2 dopamine receptor in striatal homogenates. Mol. Brain Res., 1, 29–35.

    Article  Google Scholar 

  • Goldman, M.E. and Kebabian, J.W. (1984). Aporphine enantiomers. Interactions with D-1 and D-2 dopamine receptors. Mol. Pharmacol., 25, 18–23.

    CAS  PubMed  Google Scholar 

  • Katerinopoulos, H.E. and Schuster, D.I. (1987). Structure-activity relationships for dopamine analogues: A review. Drugs of the Future., 12, 223–253.

    Google Scholar 

  • Liljefors, T. and Wikstrom, H. (1986). A molecular mechanics approach to the understanding of presynaptic selectivity for centrally acting dopamine receptor agonists of the phenylpiperidine series. J. Med. Chem., 29, 1896–1904.

    Article  CAS  PubMed  Google Scholar 

  • Lloyd, E.J. and Andrews, P.R. (1986). A common structural model for central nervous system drugs and their receptors. J. Med. Chem., 29, 453–462.

    Article  CAS  PubMed  Google Scholar 

  • McDermed, J.D., Freeman, H.S. and Ferris, R.M. (1979). Enantioselectivity in the binding of (+)- and (−)-2-amino-6,7-dihydroxy-1,2,3,4-tetrahydronaphthalene and related agonists to dopamine receptors. In Catecholamines: Basic and clinical frontiers Vol 1. Pergamon Press, New York, pp 568–570

    Chapter  Google Scholar 

  • Meitzer, H.Y. (1980). Relevance of dopamine autoreceptors for psychiatry: Preclinical and clinical studies. Schizophren. Bull., 6, 456–475.

    Article  Google Scholar 

  • Nichols, D.E. (1976). Structural correlation between apomorphine and LSD: Involvement of dopamine as well as serotonin in the actions of hallucinogens. J. Theor. Biol., 59, 167–177.

    Article  CAS  PubMed  Google Scholar 

  • Schachter, M., Bedard, P., Debono, A.G., Jenner, P., Marsden, C.D., Price, P., Parkes, J.D., Kennan, J., Smith, B., Rosenthaler, J., Horowski, R. and Dorow, R. (1980). The role of D-1 and D-2 receptors. Nature, 286, 157–159.

    Article  CAS  PubMed  Google Scholar 

  • Seeman, P., Watanabe, M., Grigoriadis, D., Tedesco, J.L., George, S.R., Svensson, U., Nilsson, J.L.G. and Neumeyer, J.L. (1985). Dopamine D2 receptor binding sites for agonists. A tetrahedral model. Mol. Pharmacol., 28, 391–399.

    CAS  PubMed  Google Scholar 

  • Seeman, P. and Grigoriadis, D. (1987). Dopamine receptors in brain and periphery. Neurochem. Int., 10, 1–25.

    Article  CAS  PubMed  Google Scholar 

  • Stoof, J.C. and Kebabian, J.W. (1984). Two dopamine receptors: biochemistry, physiology and pharmacology. Life Sci., 35, 2281–2296.

    Article  CAS  PubMed  Google Scholar 

  • Sutton, L.E. (Ed) (1958) ‘Tables of interatomic distances and configurations in molecules and ions’ Chemical Society special publication No. 11.

    Google Scholar 

  • Sutton, L.E. (Ed) (1965) ‘Tables of interatomic distances and configurations in molecules and ions’ Chemical Society special publication No. 18.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Copyright information

© 1988 Philip M. Beart and David T. Manallack

About this chapter

Cite this chapter

Beart, P.M., Manallack, D.T. (1988). Structural Analyses Predict the Primary Pharmacophore and Secondary Sites for the D2 Receptor. In: Beart, P.M., Woodruff, G.N., Jackson, D.M. (eds) Pharmacology and Functional Regulation of Dopaminergic Neurons. Satellite Symposia of the IUPHAR 10th International Congress of Pharmacology. Palgrave Macmillan, London. https://doi.org/10.1007/978-1-349-10047-7_6

Download citation

Publish with us

Policies and ethics