Endogenous Dopamine Release from Brain Slices: Comparisons with Radiolabelled Release and Regulation by Autoreceptors

  • Hugh Herdon
  • Stefan R. Nahorski
Part of the Satellite Symposia of the IUPHAR 10th International Congress of Pharmacology book series (SSNIC)

Abstract

The release of dopamine (DA) from nerve terminals in the CNS is known to be influenced by a variety of pharmacological agents, which may have direct effects on some aspect of the release process or act indirectly via ‘presynaptic’ receptors. Such receptors may be for DA itself (‘autoreceptors’) or for other transmitters, and have been proposed to have a physiological role in the regulation of DA release (Chesselet, 1984).

Keywords

Dopamine Noradrenaline Alkaloid Amphetamine Kelly 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allgaier, C., Feuerstein, T.J. & Hertting, G. (1986). N-ethylmaleimide (NEM) diminishes α2-adrenoceptor mediated effects on noradrenaline release. Naunyn-Schmiedeberg’s Arch. Pharmacol., 333, 104–109.CrossRefGoogle Scholar
  2. Armstrong, D. & Eckert, R. (1987). Voltage-activated calcium channels that must be phosphorylated to respond to membrane depolarisation. Proc. Natl. Acad. Sci. (USA)., 84, 2518–2522.CrossRefGoogle Scholar
  3. Bowyer, J.F. & Weiner, N. (1987). Modulation of the Ca++-evoked release of 3H-dopamine from striatal synaptosomes by dopamine (D2) agonists and antagonists. J. Pharmacol. Exp. Ther., 241, 27–33.PubMedGoogle Scholar
  4. Chesselet, M.F. (1984). Presynaptic regulation of neurotransmitter release in the brain. Neuroscience 12, 347–375.CrossRefPubMedGoogle Scholar
  5. Feuerstein, T.J., Hertting, G., Lupp, A. & Neufang, B. (1986). False labelling of dopaminergic terminals in the rabbit caudate nucleus: uptake and release of 3H-5-hydroxytryptamine. Br. J. Pharmacol. 88, 677–684.PubMedCentralCrossRefPubMedGoogle Scholar
  6. Fredholm, B.B. & Lindgren, E. (1987). Effects of N-ethylmaleimide and forskolin on noradrenaline release from rat hippocampal slices. Evidence that prejunctional adenosine and α-receptors are linked to N-proteins but not to adenylate cyclase. Acta Physiol. Scand., 130, 95–105.CrossRefPubMedGoogle Scholar
  7. Herdon, H., Strupish, J. & Nahorski, S.R. (1985). Differences between the release of radiolabeled and endogenous dopamine from superfused rat brain slices: effects of depolarising stimuli, amphetamine and synthesis inhibition. Brain Res., 348, 309–320.CrossRefPubMedGoogle Scholar
  8. Herdon, H. & Nahorski, S.R. (1987a). Comparison between radiolabelled and endogenous dopamine release from rat striatal slices: effects of electrical field stimulation and regulation by D2-autoreceptors. Naunyn-Schmiedeberg’s Arch. Pharmacol., 335, 238–242.CrossRefGoogle Scholar
  9. Herdon, H. & Nahorski, S.R. (1987b). Effects of dihydropyridines and forskolin on K+-induced or electrically-evoked endogenous dopamine release from rat striatal slices. Br. J. Pharmacol., 91, 334P.Google Scholar
  10. Herdon, H., Strupish, J. & Nahorski, S.R. (1987). Endogenous dopamine release from rat striatal slices and its regulation by D-2 autoreceptors: effects of uptake inhibitors and synthesis inhibition. Eur. J. Pharmacol., 138, 69–76.CrossRefPubMedGoogle Scholar
  11. Innis, R.B. & Aghajanian, G.K. (1987). Pertussis toxin blocks autoreceptor-mediated inhibition of dopaminergic neurons in rat substantia nigra. Brain Res., 411, 139–143.CrossRefPubMedGoogle Scholar
  12. Kelly, E., Jenner, P. & Marsden, C.D. (1985). Evidence that 3H-dopamine is taken up and released from nondopaminergic nerve terminals in the rat substantia nigra in vitro. J. Neurochem., 45, 137–144.CrossRefPubMedGoogle Scholar
  13. Kelly, E. & Nahorski, S.R. (1986). Dopamine receptor-effector mechanisms. Reviews in the Neurosciences 1, 35–54.CrossRefGoogle Scholar
  14. Markstein, R., Digges, K., Marshall, N.R. & Starke, K. (1984). Forskol in and the release of noradrenaline in cerebrocortical slices. Naunyn-Schmiedeberg’s Arch. Pharmacol., 325, 17–24.Google Scholar
  15. McMillen, B.A., German, D.C. & Shore, P.A. (1980). Functional and pharmacological significance of brain dopamine and norepinephrine storage pools. Biochem. Pharmacol., 29, 3045–3050.CrossRefPubMedGoogle Scholar
  16. Miller, R.J. (1987). Multiple calcium channels and neuronal function. Science 235, 46–52.CrossRefPubMedGoogle Scholar
  17. Milner, J.D. & Wurtman, R.J. (1985). Tyrosine availability determines stimulus-evoked dopamine release from rat striatal slices. Neurosci. Lett., 59, 215–220.CrossRefPubMedGoogle Scholar
  18. Mulder, A.H. & Schoffelmeer, A.N.M. (1985). Catecholamine and opiate receptors, presynaptic inhibition of CNS neurotransmitter release, and adenylate cyclase. Adv. Cyclic Nucleotide Res., 19, 273–286.Google Scholar
  19. Nahorski, S.R., Kendall, D.A. & Batty, I. (1986). Receptors and phosphoinositide metabolism in the central nervous system. Biochem. Pharmacol., 35, 2447–2453.CrossRefPubMedGoogle Scholar
  20. Nichols, R.A., Haycock, J.W., Wang, J.K.T. & Greengard, P. (1987). Phorbol ester enhancement of neurotransmitter release from rat brain synaptosomes. J. Neurochem., 48, 615–621.CrossRefPubMedGoogle Scholar
  21. Parker, E.M. & Cubeddu, L.X. (1986). Effects of d-amphetamine and dopamine synthesis inhibitors on dopamine and acetylcholine neurotransmission in the striatum. II. Release in the presence of vesicular transmitter stores. J. Pharmacol. Exp. Ther., 237, 193–203.PubMedGoogle Scholar
  22. Pizzi, M., D’Agostini, F., Da Prada, M., Spano, P.F. & Haefely, W.E. (1987). Dopamine D2 receptor stimulation decreases the inositol trisphosphate level of rat striatal slices. Eur. J. Pharmacol., 136, 263–264.CrossRefPubMedGoogle Scholar
  23. Raiteri, M., Cervoni, A.M. & Del Cormine, R. (1978). Do presynaptic autoreceptors control dopamine release? Nature 274, 706–708.CrossRefPubMedGoogle Scholar
  24. Savaki, H.E., Girault, J.A., Spampinato, U., Truong, N.A., Glowinski, J. & Besson, M.J. (1986). Release of newly-synthesised 3H-dopamine in the striatum: an adaptation of the push-pull cannula method to awake restrained and anaesthetised rats. Brain Res. Bull., 16, 149–154.CrossRefPubMedGoogle Scholar
  25. Schoffelmeer, A.N.M., Wardeh, G. & Mulder, A.H. (1985). Cyclic AMP facilitates the electrically evoked release of radiolabeled noradrenaline, dopamine and 5-hydroxytryptamine from rat brain slices. Naunyn-Schmiedeberg’s Arch. Pharmacol., 330, 74–76.CrossRefGoogle Scholar
  26. Schoffelmeer, A.N.M., Wierenga, E.A. & Mulder, A.H. (1986). Role of adenylate cyclase in presynaptic α2-adrenoceptor- and μ-opiate receptor-mediated inhibition of 3H-noradrenaline release from rat brain cortex slices. J. Neurochem., 46, 1711–1717.CrossRefPubMedGoogle Scholar
  27. Versteeg, D.H.G. & Florijn, W.J. (1987). Phorbol 12,13-dibutyrate enhances electrically stimulated neuromessenger release from rat dorsal hippocampal slices invitro. Life Sci., 40, 1237–1243.CrossRefPubMedGoogle Scholar
  28. Zurgil, N., Yarom, Y. & Zisapel, N. (1986). Concerted enhancement of calcium influx, neurotransmitter release and protein phosphorylation by a phorbol ester in cultured brain neurons. Neuroscience 19, 1255–1264.CrossRefPubMedGoogle Scholar

Copyright information

© Hugh Herdon and Stefan R. Nahorski 1988

Authors and Affiliations

  • Hugh Herdon
    • 1
  • Stefan R. Nahorski
    • 2
  1. 1.Department of Pharmacology and Therapeutics, Medical Sciences BuildingUniversity of LeicesterLeicesterUK
  2. 2.Department of PharmacologyUniversity of LeedsLeedsUK

Personalised recommendations